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Abstract

Statistical Methods and Experimental Design for Inference Regarding Dose and/or
Interaction Thresholds Along a Fixed-Ratio Ray

By Sharon Dziuba Yeatts
A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2006

Major Director: Dr. Chris Gennings
Professor, Department of Biostatistics

An alternative to the full factorial design, the ray design is appropriate for
investigating a mixture of ¢ chemicals, which are present according to a fixed mixing ratio,
called the mixture ray. Using single chemical and mixture ray data, we can investigate
interaction among the chemicals in a particular mixture. Statistical models have been used
to describe the dose-response relationship of the single agents and the mixture; additivity is
tested through the significance of model parameters associated with the coincidence of the
additivity and mixture models.

It is often assumed that a chemical or mixture must be administered above an

unknown dose threshold in order to produce an effect different from background. Risk



Xiv
assessors often assume that interactions are a high-dose phenomenon, indicating that doses
below the unknown interaction threshold are associated with additivity. We developed
methodology that allows the user to simultaneously estimate the dose threshold and the
interaction threshold. This methodology allows us to test for interaction and, secondarily,
to test for a region of additivity. The methodology and optimal design characteristics were
illustrated using a mixture of nine haloacetic acids.

The application of statistical optimality criteria to the development of experimental
designs is vital to the successful study of complex mixtures. Since the optimal design
depends on the model of interest and the planned method of analysis, developments in
statistical methodology should necessarily correspond to consideration of the experimental
design characteristics necessary to implement them. The Flexible Single Chemical
Required methodology is based on an implicit statement of additivity. We developed a
method for constructing the parameter covariance matrix, which forms the basis of many
alphabetic optimality criteria, for the implicit FSCR models. @~ The method was
demonstrated for a fixed-ratio mixture of 18 chemicals; the original mixture experiment
comprises the first stage data, and the optimal second stage design was presented. Wald-
type procedures for hypothesis testing in nonlinear models are based on a linear
approximation. As a result, likelihood ratio-based procedures may be preferred over Wald-
type procedures. We developed a procedure for using the likelihood ratio-based lower
confidence bound as an optimality criterion, which can be used to find the optimal second

stage design for improving the inference on a particular model parameter. The method was



XV

demonstrated for a single agent, as a means of improving the inference on the dose

threshold.



Chapter 1

Introduction and Motivation

1.1 Background

Humans are exposed to mixtures of chemicals on a daily basis, and the number of
chemicals involved in the mixture may be quite large (Monosson, 2005; Teuschler et al.,
2002). Simmons (1995), however, observed that, “in contrast to the environmental
reality that human exposure is to mixtures, the vast majority of toxicology studies
examine the cancer and noncancer health effects of single chemicals.” This is likely
because the study of a mixture is often difficult when the number of chemicals involved
is moderate to large. In addition, the number of potential mixtures for study is seemingly
endless. As a result, dose-response and toxicity information often exist for the single
chemicals in the mixture, but not for the mixture itself (Teuschler and Hertzberg, 1995).

Full factorial experiments are traditionally used to study chemical mixtures, because
they allow the experimenter to investigate the relationship among the chemicals
throughout the combination space. However, the factorial experiment that is generally
used to investigate interaction may not be experimentally feasible when the number of
chemicals in the mixture is large. As the number of chemicals involved in the mixture

increases, the experiment quickly becomes impractical due to the amount of time and
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resources required. Therefore, Teuschler et al. (2002) comment on the importance of
considering “efficient experimental designs ... [that] can be employed to provide
information on toxicity and interaction effects without implementing a full factorial
design.” In this regard, the ray design is a useful alternative to the factorial design and an
important development in the design and analysis of chemical mixtures.

As defined by the United States Environmental Protection Agency, a complex
mixture is a mixture containing “so many components that any estimation of its toxicity
based on its components’ toxicities contains too much uncertainty and error to be useful”
(U.S. EPA, 2000). Often, such a mixture is the result of a process; the potential to
improve the process may come from knowledge regarding the behavior of the individual
components and the mixture. For example, the disinfection of drinking water results in
the addition of disinfection byproducts (DBPs) to the treated water. The result is a
complex mixture for which the relative proportions of the constituents are only partially
known. As will be discussed in Chapter 2, the EPA has selected a class of DBPs to study
in a component-based mixture, where the proportion of the components in the mixture is
specified by a particular disinfection process.

According to Teuschler et al. (2002), methods for the risk assessment of chemical
mixtures fall into one of two categories. Whole mixtures approaches are those in which
the mixture is evaluated as if it were a single entity rather than a mixture of agents.
Component-based approaches are those in which the mixture is evaluated as a
combination of the components, often under the default assumption of additivity. The

focus of this dissertation is on the development of methods that use information from
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both the individual components and an experimentally constructed mixture to test for
interaction with statistical rigor. For mixtures with a large number of components, we are
particularly interested in the use of the fixed-ratio ray design, since these rays may be
determined such that the mixing ratio is environmentally relevant in terms of human
exposure.

To begin this dissertation, we will briefly review some concepts that are important to
the development of statistical methodology for investigating the toxicology of complex
chemical mixtures. In Section 1.2, we describe the ray design and its implications for the
analysis of interactions among the chemicals in a complex mixture. The concept of a
dose threshold is introduced in Section 1.3. In Section 1.4, we define additivity and
interaction; support for the concept of a dose-dependent interaction is presented in
Section 1.5. In Section 1.6, we briefly discuss current statistical methodologies for
detecting interaction among the chemicals in a complex mixture. Finally, in Section 1.7,
we provide an overview of the relationship between these topics and the prospectus for

the dissertation.

1.2 The Ray Design

As described by Mantel (1958), Brunden and Vidmar (1989) and others, ray designs
can be used to explore a response surface. Following the work of Gennings et al. (2002)
and Casey et al. (2004), however, we can also use the ray design to focus interest on a
particular ratio of chemicals. The ray design is appropriate for investigating the

relationship among ¢ chemicals when the chemicals are present in the mixture according
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to a fixed mixing ratio, called the fixed-ratio mixture ray. Using single chemical data and
data from the fixed-ratio mixture ray, we can investigate interaction among the chemicals
in a particular mixture, without requiring that we consider the entire combination space.
According to Teuschler et al. (2002), because the study of all possible mixture
combinations is not possible, “the mixture components that are tested and their relative
proportions in the mixture should reflect those seen in environmental samples.” As a
result, the use of the ray design is an important advancement in the evaluation of mixture
toxicology.

To set notation, let the first ¢ rays represent the single chemical data, and let the last

ray represent the mixture data along the fixed-ratio ray, for a total of c+1 rays. The

fixed-ratio ray for the mixture is defined by the mixing ratio a =[a, a, ... a_], where

0<a <1 forall i=1,...,c and ¥ . a =1. The i" single chemical is represented by a
] i=1 y

fixed-ratio ray where the mixing ratio is defined such that the i™ element of @ is 1, and

the remaining elements are zero. In either case, a, is the proportion of the i™ chemical in
the mixture, and x, = a is the dose of the i chemical associated with total dose .

Because the amount of the individual chemicals in the mixture can be determined,
the use of the ray design allows the investigator to look at questions regarding both the
interaction among the chemicals and the main effects associated with the chemicals.
Others have shown that, when single chemical data are available for all of the chemicals

involved in the mixture, the ray design is a useful tool for efficiently investigating the
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interaction among the chemicals along a given ray (Gennings et al., 2002; Casey et al.,

2004; Hamm, 2004).

1.3 The Existence of a Threshold

As a result of complicated biotransformation, elimination and/or repair processes,
many biological systems exhibit some level of tolerance to a toxic insult (Cox, 1987). In
such instances, in order for the chemical to cause an observable change in response, the
body must be exposed to quantities sufficient to overwhelm these processes. It is often
reasonable, therefore, to assume that a chemical must be administered above an unknown
dose threshold if it is to produce an effect that is different from background. To account
for this, Cox (1987) and Ulm (1991) described single chemical dose response
relationships using models in which the dose threshold is a parameter to be estimated.

Schwartz, Gennings and Chinchilli (1995) extended the concept and methodology of
the dose threshold to the estimation of the response surface associated with a mixture of
chemicals. Gennings et al. (1997) applied the dose threshold to the estimation of an
additivity surface using single chemical data only. More recently, Casey et al. (2004)
developed methodology for including the dose threshold in the analysis of a chemical
mixture along a fixed-ratio ray. As these recent advances indicate, the continued
development of statistical methods and experimental design for analyzing the dose-
response relationship of a mixture in the low-dose region is of particular importance to

risk assessors. In particular, Teuschler et al. (2002) encourage the development of
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methods for detecting thresholds, since the dose-response relationship evident at high

doses may not be applicable in the low-dose region.

1.4 The Definition of Additivity
Throughout this dissertation, the definition of additivity used is that given by the
interaction index (Berenbaum, 1985). If the relationship among the ¢ chemicals in a

mixture is additive, then

X; _
ZE—I, (1.1)

where x, represents the concentration/dose of the i chemical in the mixture combination
that yields response y, and E, represents the concentration/dose of the i™ chemical that

individually yields the same response. The left-hand side of equation (1.1) is referred to
as the interaction index.

The basic concept of an interaction is simple. An interaction implies that the
presence of one agent alters the slope of the dose-response relationship associated with
another agent (Gennings et al., 2005; Teuschler et al, 2002). If the slope of the dose-
response relationship is not affected by the presence of another agent, then the
relationship is said to be additive. For a given mixture, if the interaction index is equal to
one, then the relationship among the chemicals is said to be additive. If the interaction
index is different from one, then an interaction exists among the chemicals in the mixture.

When the chemicals in a mixture interact, it is of interest to characterize the

interaction as synergistic or antagonistic. Antagonism indicates that the effect of the
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agents in combination is less than what is predicted under additivity; that is, the effect of
a given agent is diminished by the presence of the other agents in the mixture.
Conversely, synergism indicates that the effect of the agents in combination is greater
than what is predicted under additivity; that is, the effect of a given agent is enhanced by
the presence of the other agents in the mixture.

The magnitude of the interaction index, relative to the additivity value of 1, indicates
whether the interaction is synergistic or antagonistic. If the interaction index is larger
than 1 for a given mixture, then the interaction among the chemicals in the mixture is
described as an antagonism. Conversely, if the interaction index is smaller than 1 for a
given mixture, the interaction among the chemicals in the mixture is described as a
synergism. While the interaction index has been used to determine the presence of an
interaction in the toxicological literature, the statistical significance of the interaction
index is rarely addressed.

Statistical models for assessing interaction have an advantage over Berenbaum’s
interaction index. It can be shown that Berenbaum’s interaction index is algebraically
equivalent to the statistical additivity model, which involves only linear terms. As a
result, the statistical significance of cross-product terms is directly related to the presence
of an interaction. In statistical practice, the null hypothesis of additivity is tested through
the significance of these terms, rather than through computation of the interaction index.

In the case of the ray design, we can characterize an interaction as an antagonism or a
synergism graphically. For decreasing dose-response curves, if the mixture model falls

above the additivity curve, then the relationship among the chemicals is antagonistic. If
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the mixture model falls below the additivity curve, then the relationship among the
chemicals is synergistic. For increasing dose-response curves, if the mixture model falls
below the additivity curve, then the relationship among the chemicals is antagonistic. If
the mixture model falls above the additivity curve, the relationship among the chemicals
is synergistic. The significance of the interaction corresponds to the significance of the

model parameter(s) associated with the interaction.

1.5 Dose-Dependent Interactions

The interaction among the chemicals in a mixture may be dose-dependent
(K6nemann and Pieters, 1996). In fact, according to Gennings et al. (2004),
“mechanisms of ... chemical interaction are rarely uniform across the entire dose-
response range and instead tend to be highly dose-dependent.” For example, Gennings et
al. (2002) found that interaction in the mixture of arsenic, cadmium, chromium and lead
was synergistic for some dose combinations and antagonistic for others, while no
interaction was detected for still other dose combinations. Gessner and Cabana (1970)
studied a mixture of ethanol and chloral hydrate; their analysis suggests that a synergism
exists “when low to moderate levels of ethanol are combined with moderate to high
levels of chloral hydrate ... [whereas] for all other combinations, there does not appear to
be a departure from additivity” (Carter, 1995). There are a number of other examples in
recent peer-reviewed literature.

To account for the dose-dependent nature of interactions, El-Masri, Tessari and Yang

(1996) developed the concept of an interaction threshold using Physiologically Based
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Pharmacokinetic (PBPK) models. Hamm, Carter and Gennings (2005) incorporated the

concept of an interaction threshold in the modeling of a dose response surface using an
interaction boundary. Hamm (2004) also developed a statistical model for describing the
dose response relationship of a chemical mixture along a fixed-ratio ray, in which the
interaction threshold is a parameter to be estimated. The interaction threshold model
allows the interaction among the chemicals to vary, depending on the location of the total
dose of the mixture with respect to the unknown interaction threshold. In particular,
Hamm’s interaction threshold model describes additivity for total doses smaller than the
interaction threshold, while the model allows the mixture to exhibit departure from
additivity for larger total doses.

This assumption of low-dose additivity is acknowledged by the U.S. EPA (2000) and
supported by Carpy, Kobel and Doe (2000). A literature review conducted by Carpy,
Koble and Doe (2000) demonstrated that interactions are rare at low exposure levels,
though the reason for this is unclear. It may be that additivity truly prevails in the low
dose region. On the other hand, it may be that the study design was insufficient to detect
an interaction, or that the interaction effect is of such small magnitude that it is difficult
to detect or of no practical significance. However, Kénemann and Pieters (1996) support
the assumption of low dose additivity, stating that interactions “may not be very relevant
in the low-dose region.” When a mixture is under investigation for regulatory purposes,
the analysis is often based on the assumption of additivity among the chemicals in the
mixture. However, Teuschler and Hertzberg (1995) acknowledge that “these additivity

procedures include a general assumption that interaction effects at low dose levels either
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do not occur at all or are small enough to be insignificant to the risk estimate. Although
risk assessors often assume that interactions do not occur at low doses, any known
antagonism or synergism should be reflected in the risk assessment whenever possible.”
Therefore, due to its potential implications in risk assessment, the interaction threshold
model is an important development in statistical methodology.

In 2002, the Society of Toxicology commissioned an expert panel to suggest
directions for future research in the risk assessment of chemical mixtures (Teuschler et
al., 2002). A number of the alternative hypotheses presented by the panel dealt with
interaction thresholds. Specifically, the panel stressed the importance of demonstrating
additivity among the chemicals in a mixture at low exposure levels. The panel also
emphasized the importance of being able to determine that the interaction threshold
occurs at a higher dose than the individual chemical dose thresholds.

The ability to detect dose-dependent interactions has important implications for
toxicology; evidence of an interaction should be incorporated into the risk assessment of
a mixture. Among the chemicals present in a mixture, it may be that a synergism exists
at high doses, such that the toxicity of the combination is greater than that predicted
under additivity. In this case, considerable resources may be devoted to restricting
human exposure to low dose levels for safety reasons. Conversely, if an antagonism
exists at high doses, the toxicity of the combination at high doses is less than that
predicted under additivity. As a result, the public health community may not express
much interest in restricting exposure. Because public health importance depends, in part,

on the nature and the location of the interaction, Teuschler and Hertzberg (1995) state
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that “the study of toxicity thresholds and interaction thresholds for combinations of
chemicals” is of interest in the EPA’s mixture research program.

The study of therapeutic thresholds and interaction thresholds for combinations of
drugs and/or medications is likely to be of interest to the FDA as well. Among a mixture
of medications, it may be that a synergism exists at high doses, such that the combination
produces a better response than expected under additivity of the drugs. Knowledge of
such a synergism has the potential to impact the course of treatment, since it might allow
a physician to lower the prescribed dose of the combination while still achieving the
desired response. Conversely, it may be that an antagonism exists at high doses, such

that the medications do not work as well in combination as predicted under additivity.

1.6 Statistical Design and Methodology

The implementation of statistical models is an important tool in risk assessment.
Threshold models allow the user to detect the presence of a dose threshold for a single
agent or a complex mixture. The interaction threshold model allows the researcher to
address the assumption of low-dose additivity. The statistical significance of the
interaction threshold parameter provides evidence that there is a low-dose region of the
mixture for which the relationship among the chemicals is additive. Because statistical
models account for the variability in the data, the location of the threshold, if it exists, can
be estimated with some degree of confidence. These models are significant

advancements in the study of mixture toxicology; however, further developments in
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statistical modeling are crucial for advancing the current state of science and addressing
the continually changing needs of the field of toxicology.

While statistical interaction threshold models are capable of detecting dose-
dependent interaction, the statement of such models is generally complicated. Since full
factorial designs are often unfeasible for complex mixtures, care should be taken to
ensure that mixture studies are designed to conserve resources while still providing
sufficient information to meet research objectives. Simmons (1995) emphasized the need
for improvement in the experimental design of mixtures studies, stating that “adoption of
the use of statistically appropriate, innovative experimental designs that are efficient in
their use of animals would increase the ability of toxicologists to determine the presence
of nonadditive toxicity resulting from exposure to chemical mixtures.” In this regard, the
ray design is an important advancement. In addition, however, the application of
statistical optimality criteria to the development of experimental designs is crucial to the
successful study of complex mixtures. Specifically, the implementation of a statistically
optimal design allows the investigator to focus experimental efforts on the areas of most
importance for the study under consideration. Since the optimal design depends on the
model of interest, developments in statistical methodology should necessarily correspond

to consideration of the experimental design characteristics necessary to implement them.

1.7 Prospectus
This dissertation is written in a distinct style. Chapters 2, 4 and 5 are preliminary

versions of manuscripts in preparation for submission to statistical and toxicological
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journals. These chapters are meant to stand alone; the literature review and notation
development for each dissertation topic are completely contained within each chapter.
As a result, there may be some overlap in the coming chapters.

As previously described, the expert panel commissioned by the Society of
Toxicology indicated the need for statistical methodology capable of demonstrating low-
dose additivity. The panel also stated the importance of methodology capable of
determining that the interaction threshold of a mixture is higher than the dose threshold.
In Chapter 2, we develop methodology that addresses both of these areas of research.
The proposed dose and interaction thresholds model allows the simultaneous estimation
of both the dose threshold and the interaction threshold along a fixed-ratio mixture ray.
As a result, we can test the primary null hypothesis of additivity. If this hypothesis is
rejected, then we can test for an active region of low-dose additivity by comparing the
interaction threshold to the dose threshold. We also present the characteristics of the
optimal design associated with this model. The method is demonstrated for a fixed-ratio
mixture of nine single agents.

We have previously discussed the need for developments in design methodology to
keep up with developments in statistical methodology. In Chapters 3 and 4, we address
this issue as it pertains to the Flexible Single Chemical Required (FSCR) methodology
developed by Gennings et al. (2004, 2006). We develop a method for constructing the
associated parameter covariance matrix, which forms the basis of many alphabetic
optimality criteria. The method is demonstrated for a fixed-ratio mixture of 18 single

agents, and the optimal design is presented. In addition, we apply the penalized
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optimality criterion developed by Parker and Gennings (2006) to improve the practicality

of the optimal design.

Likelihood ratio-based procedures may be preferred when making inference
regarding nonlinear dose-response relationships. In Chapter 5, we propose a procedure
for using the likelihood ratio-based confidence interval as an optimality criterion, which
can be used to find the optimal second stage design for improving the inference on a
particular model parameter. The method is demonstrated for a single agent, as a means
of improving the inference on the dose threshold. The resulting quasi-likelihood ratio-
based design is presented and compared to the associated D- and Ds- optimal designs,
and general design implications are discussed.

Finally, in Chapter 6, we summarize our contribution to the development of
statistical methodology for the analysis of complex chemical mixtures and present areas

for future research in this area.



Chapter 2
Detecting Departure from Additivity Along a Fixed-Ratio Mixture Ray with a

Piecewise Model for Dose and Interaction Thresholds

2.1 Introduction and Motivation

As a result of complicated biotransformations, eliminations and/or prevention and
repair processes, many biological systems exhibit some level of tolerance to a toxic insult
(Cox, 1987). In such instances, in order for the chemical to cause an observable change
in response, the body must be exposed to quantities sufficient to overwhelm these
processes. It is often reasonable, therefore, to assume that a chemical must be
administered above an unknown dose threshold if it is to produce an effect that is
different from background. To account for this, Cox (1987) and Ulm (1991) described
single chemical dose response relationships using models in which the dose threshold is a
parameter to be estimated. Schwartz, Gennings and Chinchilli (1995) extended the
concept and methodology of the dose threshold to the estimation of the response surface
associated with a mixture of chemicals. Gennings et al. (1997) applied the dose threshold
to the estimation of an additivity surface using single chemical data only. More recently,
Casey et al. (2004) developed methodology for including the dose threshold in the

analysis of a chemical mixture along a fixed-ratio ray.

15
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It is also reasonable to consider the situation in which the relationship among the
chemicals in a mixture is dose-dependent (Gennings et al., 2002; Kénemann and Pieters,
1996). For example, Gennings et al. (2002) found that interaction in the mixture of
arsenic, cadmium, chromium and lead was synergistic for some dose combinations and
antagonistic for others, while no interaction was detected for still other dose
combinations. To account for the dose-dependent nature of interactions, El-Masri,
Tessari and Yang (1996) developed the concept of an interaction threshold using PBPK
models. Hamm, Carter and Gennings (2005) incorporated the concept of an interaction
threshold in the modeling of a dose response surface using an interaction boundary.
Hamm (2004) also developed a statistical model for describing the dose response
relationship of a chemical mixture along a fixed-ratio ray, in which the interaction
threshold is a parameter to be estimated. The interaction threshold model allows the
interaction among the chemicals to vary, depending on the location of the total dose of
the mixture with respect to the unknown interaction threshold. In particular, Hamm’s
interaction threshold model describes additivity for total doses smaller than the
interaction threshold, while the model allows the mixture to exhibit departure from
additivity for larger total doses. The assumption of low-dose additivity is acknowledged
by the U.S. EPA (2000) and supported by Carpy, Kobel and Doe (2000), whose literature
review demonstrated that interactions are rare at low exposure levels. It may be that
additivity truly prevails in the low dose reason. On the other hand, it may be that the
study design was insufficient to detect an interaction, or that the interaction effect is of

such small magnitude that it is difficult to detect or of no practical significance.



17

The interaction threshold model is an important development in statistical
methodology. In 2002, the Society of Toxicology commissioned an expert panel to
suggest directions for future research in the risk assessment of chemical mixtures
(Teuschler et al., 2002). A number of the alternative hypotheses presented by the panel
dealt with interaction thresholds. Specifically, the panel stressed the importance of
demonstrating additivity among the chemicals in a mixture at low exposure levels. The
panel also emphasized the importance of being able to determine that the interaction
threshold is higher than the dose threshold. This suggests the need for statistical
methodology capable of simultaneously estimating both a dose threshold and an
interaction threshold.

To our knowledge, however, the concepts of the dose threshold and the interaction
threshold have not been combined in a single model to describe the dose-response
relationship between a response and a chemical mixture along a fixed-ratio ray. The
situation in which both thresholds exist is considered as follows. For total doses smaller
than the dose threshold, the response of the mixture is not different from background.
For total doses between the dose threshold and the interaction threshold, the model
describes an additive relationship among the chemicals in the mixture. For total doses
larger than the interaction threshold, the model allows for interaction among the
chemicals in the mixture. The development of such a model for describing the dose
response relationship of a chemical mixture along a fixed-ratio ray is the primary

objective of this chapter.
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In section 2.2, we propose a model that includes both a dose threshold and an
interaction threshold, and we describe the estimation process and related hypothesis tests.
In section 2.3, we present an example in which the dose and interaction thresholds model
is used to analyze the cell viability of a mixture of nine haloacetic acids (HAAs) along a
fixed-ratio ray. In section 2.4, we discuss the design implications of this model and

present optimal ray designs for the support of the dose and interaction thresholds model.

2.2 Methodology

2.2.1 Data Description

Consider the situation where we have single chemical data available for each of the ¢
chemicals in the mixture, as well as mixture data taken along the fixed-ratio ray of
interest, for a total of c+1 rays. For mixture doses below the interaction threshold, both
the single chemical data and the mixture data are used to estimate the slopes associated
with each of the single chemicals under the assumption of additivity. For mixture doses
exceeding the interaction threshold, we use the mixture data alone to estimate the model
parameters associated with departure from additivity. Therefore, the dose and interaction
thresholds model is supported by both the single chemical data and the mixture data
along the fixed-ratio ray.

To set notation, let the first ¢ rays represent the single chemical data, and the last ray
represents the mixture data along the fixed-ratio ray. The fixed-ratio ray for the mixture

is defined by the mixing ratio, a=[a, a, - a/]. The i" single chemical is

represented by a fixed-ratio ray where the mixing ratio is defined such that the i™ element
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of a is 1, and the remaining elements are 0. In either case, x, =/ is the dose of the i"
chemical associated with total dose ¢.

Let a,represent the mixing ratio for the nt ray, for h=1, ... ,c+1. Let x;; be the dose
of the i chemical at the /" dose on the 4" ray. Then ¢, = z; x,; is the j" total dose

along the 4" ray, and x,; =a,t,;. Let yy represent the & response from the j" dose of

the A™ ray, for j=1, ... wy, and k=1, ... n;;, where w;, represents the number of treatment
levels for the A™ ray and ny represents the number of observations taken at the jth

treatment level on the A" ray. Let P represent the vector of regression parameters, such

that E { yhjk} =, (B) and Var { yhjk} = TV( My (B)) The total sample size for both the

c+l W,
single chemical and the mixture ray datais N = ZZnhj .

h=1 j=1

Because the amount of the individual chemicals in the mixture can be determined,
the use of the ray design allows the investigator to look at questions regarding both the
interaction among the chemicals involved in the mixture and the main effects associated
with the chemicals. When single chemical data are available for all of the chemicals
involved in the mixture, the ray design is a useful tool for efficiently investigating the
interaction among the chemicals along a given ray. Following the Single Chemical
Required (Casey et al.,, 2004) methodology, the single chemical data can be used to
predict additivity along the ray. To test for interaction, the coincidence of the additivity

model and the mixture model is tested. When single chemical data are not available, the
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Single Chemical Not Required (Casey et al., 2004) methodology, which associates the

coefficient of the /™ degree term to j-factor interactions, can be applied.

2.2.2 The Dose and Interaction Thresholds Model

The goal of this section is to develop the piecewise model containing both a dose
threshold and an interaction threshold. We will first describe a dose threshold additivity
model for any mixture of chemicals; then we will demonstrate how the model is modified
when we consider only a mixture along a fixed-ratio ray. Based on this two segment
threshold additivity model for the ray, we develop a three-segment model that includes
both a dose threshold and an interaction threshold. The third segment in the model
allows the relationship among the chemicals to depart from additivity. Lastly, we
constrain the model so that the response is continuous throughout the dose range.

Consider the dose threshold model in which the relationship among the ¢ chemicals
is that of additivity. If the dose-response curve is decreasing, we want this two segment
model to specify that there is no change in the mean response prior to the dose threshold,
and that the mean response decreases as a possibly nonlinear function of the predictor

variables under the assumption of additivity. Let y represent the vector of parameters
necessary to describe the nonlinear dose-response relationship; for example, y might

consist of a minimum response and a range parameter. The basic dose threshold model,

then, is of the following form.
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By, s Z:Bixi > G a
g(/“add"Y) = - 2.1)

[4

[4
B + Z:Bixf ) Z % < O
i1

i=1
In the above dose threshold model, Sy and Sy, are parameters related to the intercept of

each segment, 3 represents the slope of the i/ chemical in the mixture, and &, is a
parameter related to the unknown threshold for the mixture under the assumption of
additivity.

Along the ray, however, we know that x; =a,z. Therefore, the dose threshold model
given in equation (2.1) can be rewritten to describe the dose-response relationship
expected under additivity along the ray, as follows.

Ba, > Zﬂiait > Gia
g (;uadd’Y) = !

C

[4
B, + Zﬂiait > Zﬂiait <ot
i=1

i=1

— ﬂOl ’ gaddt > dadd
ﬁ 02 + gadd t ’ gadd t< 6add

ﬁOl ’ t <5add_t

) 2.2
g(luadd’y) {1302+Baddt ,t-zé‘add*t -

Equation (2.2) defines the dose threshold additivity model along the ray. In this
parameterization of the model, 6, = z p.a; is the slope of total dose along the ray and
i=1

Outd 1 =Oaaa | O,qy 15 the dose threshold in terms of total dose.  The dose threshold for

the i"™ single chemical in the mixture is represented by 5‘"”/3 (Casey et al., 2004).
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To incorporate an interaction threshold into our model, the model for the dose-
response relationship along the ray consists of three segments. To address the
assumption of low dose additivity, the additivity region is described according to the
threshold additivity model for a fixed-ratio ray, and the interaction region includes
parameters that allow for departure from additivity. The model specifies that there is no
change in the mean response prior to the dose threshold and describes an additive
relationship for mixture doses below the interaction threshold. For mixture doses beyond
the interaction threshold, the model allows for departure from additivity.

Consider, then, the following model for the dose-response relationship of a mixture

along a ray.

B, ,t< 5add_r
g(lumix’Y) =14 B + 0,44t > 5add_: St<A (2.3)
Lo +0,t+0,,t ,t=A

As in equation (2.2), duaq , represents the dose threshold in terms of total dose, and .44
represents the slope of total dose along the ray under the assumption of additivity. In the
three segment model given in equation (2.3), A represents the interaction threshold, and
Oix 1s the change in the slope for total doses administered above the interaction threshold.

To make the model given in equation (2.3) continuous at the dose threshold &4 1, We
set By, +6,4 5add_ , = P, - This continuity constraint requires that S, = f,, —6.. 5add_ '

and the model then becomes

ﬁ‘” » 1< 5add_t
g(lumix’y) = :Bm + gaddt - eadd5add_t ’ 5add_, St<A. 2.4)
Boz + 0,4, +6,.1 , 2 A
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The model given in equation (2.4) is continuous at the dose threshold. To make it

continuous at the interaction threshold as well, we set

By +0,,0+6,,8=py +0,,A-0,,0,, .. This continuity constraint requires that

Bos = Boy =0u4a0uaa  — i s and the model then becomes

'BOI » I < 5add_t
g(/umix’y) =9 Bor + Ot - eaddéadd_t , 5,,4,1_, <t<A =
,301 - Haddéadd_t - gmixA +0addt + emixt s 12 A

Do, o 8 <Ot
g(ﬂme) =480+ 6 (t - §add_t) > 5add_t St<A

(2.5)
Bor + O (t - 5add‘t)+ Ornic (t_ A) s 12ZA

The model given in equation (2.5) is continuous at both the dose threshold and the
interaction threshold.
Recall that both the single chemical data and the mixture data are used to fit the dose

and interaction thresholds model, which is of the form

:80 ’ t(h) < 5add_t(h)
c Loy 2 O, ,h<e
g(ll'lh”y) =1 ,80 + (Z ﬂiai(h)](t(h) - 5add_t(h)) > (26)
i=1

<t,, <A ,h=c+1

add _t,,

B, + (Z ﬂiai(h)j (ty = Cuts siny) * O (t,,-4) ., tyy2Aandh=c+1
. i=1

Both the single chemical data and the mixture data are used to support the region of
additivity, while only the mixture data are used to support the interaction region. Higher

order terms can be added to the third segment of the model as necessary.
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The dose and interaction thresholds model relates the total dose of the mixture along

a fixed-ratio ray to the mean through a link function, g(,uh,y). For decreasing dose-

response relationships with an approximate sigmoid shape, consider y = [a }/] , where a

represents the minimum response and y represents the range of the response. Then the

mean response, u, can be represented by any nonlinear function of the form

a+yF(g(u)), where F(s) is any decreasing, sigmoidal function that takes on values

between zero and one. For increasing dose-response relationships, F (0) is any

increasing, sigmoidal function that takes on values between zero and one.

2.2.3 Quasi-likelihood Estimation

In the study of dose-response relationships, it is common to see that the variance of
the response is not constant. Instead, the variance of the response often changes as a
function of the mean response. Quasi-likelihood methods can be used to account for this

in the data analysis.
Let [i=[ﬂ, B, o B Oy O A] be the px1 parameter vector

represented in the dose and interaction thresholds model given in equation (2.6). Under
the usual Gaussian framework, it is assumed that each of the observations comes from

some normal distribution, that each observation is independent of the other observations,
and that Y,, ~ N ( My (B),JZ) . Here, 4, (B) is the expected value of the response at the

/™ dose on the 4™ ray, which is related to the total dose administered through the px1
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parameter vector B. The quasi-likelihood framework, however, allows some of these
assumptions to be relaxed.

Under the quasi-likelihood framework, only the form of the first and second
moments of the response, i.e. E {thk} =,/ (B) and Var {thk} =V (u, (B)) , are assumed,

without having to assume the distributional form of the response (McCullagh, 1983). For

th

the N x1 response vector Y, where the s™ element of Y is the response of the s™

independent observation, we arrive at the assumptions E{Y}=p(B) and Var{Y}=1V .

Here Vis an Nx N diagonal matrix where the (s,5)™ element is V(u(B)) resulting from
the s™ observation.

The quasi-likelihood method can be used to estimate model parameters following the
estimation procedures described in McCullagh and Nelder (1989). The quasi-likelihood

for an individual observation is the integral

. _ “w Y —1 /
O(u(B)iy)=| ETOLE

which behaves in the same way as a log-likelihood. The quasi-likelihood for the sample

is the sum of the individual quasi-likelihoods

N

O(n(B);y)=D.0.(x (B);»,)- @2.7)

s=1
We can use numeric methods to find the maximum quasi-likelihood estimate §, the value

of B that maximizes the quasi-likelihood given in equation (2.7).

Under the regularity conditions given in Seber and Wild (2003), the quasi-likelihood

estimate P has properties similar to maximum likelihood estimates. As set forth by
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McCullagh and Nelder (1989), the quasi-likelihood estimates are asymptotically normal

with mean B. Let the matrix F represent the matrix of derivatives of the mean response

with respect to the model parameters, such that F = {a“([%ﬁl is an nx p matrix. Then

the asymptotic covariance matrix is (McCullagh and Nelder, 1989)

-1

Var{p} =2 =7(FV'F) =70 (2.8)

where Q = (F'V"IF)'1 . The moment estimate,

.1 H-a) X
T= > A0 , (2.9)

is generally used to estimate T (McCullagh and Nelder, 1989), where X is the generalized

Pearson statistic, which has an asymptotic y>_ .

2.2.4 Inference
The quasi-likelihood ratio test can be used to compare two nested models in much

the same way as the likelihood ratio test. Let Q,, be the maximum quasi-likelihood

achieved under the full model, and let Q

red

be the maximum quasi-likelihood achieved

under the reduced model. Then the likelihood ratio test statistic is

IRT = _2{Qred —quu} ’
T

which has an approximate y* distribution with M degrees of freedom (McCullagh, 1983),

where M is the number of parameters constrained by the reduced model and 7 is known
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under the full model. However, under the quasi-likelihood framework, t is often
unknown and estimated in the modeling process. Replacing t with a consistent estimate

7 , the quasi-likelihood ratio test statistic is

-2 {Qred - Q ﬁdl}

LRT =
Q ™

(2.10)

Conservatively, for large samples, QLRT has an approximate F distribution with M and
N-p degrees of freedom.

The asymptotic properties of the maximum quasi-likelihood estimates can also be
used to form hypothesis tests and confidence intervals on the parameter vector or some
subset of the parameter vector. Based on the asymptotic normality of ﬁ, the Wald test
statistic for testing the null hypothesis B=p is

w=(B-B) =" (B~Bo)

) . (2.11)
=(B-8,) (=) (B-8,)

where I is as defined in equation (2.8). Based on the asymptotic normality of f, W has
an approximate y’ distribution with M degrees of freedom. However, under the quasi-
likelihood framework, both t and € are unknown and estimated in the modeling process.

Replacing these parameters in equation (2.11) with consistent estimates, the Wald test

statistic is

2.12)
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Conservatively, for large samples, W, has an approximate F distribution with M and N-p

degrees of freedom. It follows that an approximate 95% confidence interval around the

5™ model parameter, b=1, ..., p, is given by

\/Tpl__ \/T 2.13)

where (ﬁ‘.)(b ) is the (b,b)" element of the parameter covariance matrix ¥, and F1 1
K N-pl-=

th
is the (1 - %J percentile of the F distribution with / and N-p degrees of freedom.

The Wald test can be extended for nonlinear hypotheses of model parameters using

the Delta method as described by Seber and Wild (2003). Let A denote a g x1 vector of

functions of the parameter vector B, representing some nonlinear contrast, so that the null

hypothesis can be written as A=0. Letting D =[a7~ 55} represent the g x p matrix of

derivatives, it follows from the Delta Method (Agresti, 2002) that 4 is asymptotically

distributed N (l,DE D'). The Wald test statistic for the nonlinear contrast A is of the

form

(ot ()

WQL_A = ( q

(2.14)

Conservatively, for large samples, W), , follows an F distribution with g and N-p degrees

of freedom.
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2.2.4.1 Test of Additivity

Often, the goal of a ray design is to detect departure from additivity among the
chemicals present in the mixture. Following the Single Chemical Required (SCR)
method of Casey et al. (2004) for dose threshold models and the extension of Hamm
(2004) for interaction threshold models, the test of additivity is a test of coincidence. If
the dose and interaction thresholds model does not coincide with the two segment
additivity model, then we can conclude departure from additivity. Note that evidence of

departure from additivity is captured in the parameter 8, . Consider the situation where
6,,.. 1s equal to zero, indicating that there is no evidence of departure from additivity. In
this case, only one threshold parameter is estimable — the dose threshold, 6,4, ,. If the

interaction threshold is equal to the dose threshold, and the parameter 6,, is equal to

zero, then the dose and interaction thresholds model collapses over the second segment,
resulting in the threshold additivity model. For the dose and interaction thresholds model
given in equation (2.6) to coincide with the two segment additivity model along the

mixture ray, the null hypothesis of additivity is given by

A=,
HO: add _t )
emixzo

Recall, however, that &,,, ,=6,,/6,,, and that 6, = Z pBia; . The hypothesis of
i=1

additivity, then, is a nonlinear contrast of the model parameters, where the null

hypothesis can be written 4=0 for
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]
This hypothesis can be tested using the large sample properties of either the quasi-
likelihood ratio test described in equation (2.10) or the Wald test described in equation

(2.14). If the hypothesis test of additivity is significant, then we can conclude that there

is departure from additivity somewhere along the ray.

2.2.4.2 Test for a Region of Additivity
The dose and interaction thresholds model is designed to allow dose-dependent
interactions. If we can conclude that departure from additivity exists along the ray, a
secondary goal is to determine where that departure exists. If the interaction threshold is
significantly larger than the dose threshold for the mixture, then we can conclude that
there is an active region of additivity, a region of additivity that is associated with a

response other than background. Therefore, the one-sided test of H,:A-6,,, ,<0 isa

test for an active region of additivity along the ray. This hypothesis can be tested using a

Wald test as described in equation (2.14), where A=A-6,,, ,-

2.3 Chlorination Ray Example

2.3.1 Background

When drinking water is disinfected, chemical byproducts are put into the water.
These chemicals are known as ‘disinfectant byproducts’, or DBPs. There are

approximately 500 known DBPs, and a substantial proportion of these DBPs have yet to
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be studied for adverse health effects (Richardson, Simmons and Rice, 2002). Some of

the known DBPs fall into a class of chemicals known as haloacetic acids (HAAs). Nine
such HAAs result from the disinfection process known as chlorination and are currently
under investigation by the EPA. Table 2.1 contains a list of these HAAs and the relative
proportion of each resulting from the chlorination process.

Table 2.1. Haloacetic Acid Byproducts of the Chlorination Process

Chemical Abbreviation | Ratio in the Mixture
Chloroacetic acid CA 0.03
Dichloroacetic acid DCA 0.30
Trichloroacetic acid TCA 0.26
Bromoacetic acid BA 0.06
Dibromoacetic acid DBA 0.03
Tribromoacetic acid TBA 0.02
Bromodichloroacetic acid | BDCA 0.12
Dibromochloroacetic acid | DBCA 0.04
Bromochloroacetic acid BCA 0.14

The primary research objective is to determine whether the nine HAAs given in
Table 2.1 interact when combined according to the chlorination mixing ratio. To
investigate, an in vitro cell assay was conducted to study the cytotoxic effects of the
single chemicals. A similar study of the chlorination mixture was also conducted. The
response is cell viability, defined as the percentage of the negative control, an agent
known to have no impact on cell viability, surviving the administered concentration. A
plot of cell viability versus concentration for each single chemical in the mixture is given
in Appendix Al. Figure 2.1 is the plot of cell viability versus the total concentration (in

uM) of the chlorination mixture administered.
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2.3.2 Model Selection

As can be seen in Figure 2.1, the concentration-response relationship between the
chlorination mixture and cell viability is decreasing overall. More specifically, cell
viability appears to be strictly decreasing for mixture concentrations prior to
approximately 100 pM. Beyond 100 pM, the cell viability appears to increase slightly
and then decrease for the remaining concentrations within the experimental range. In
other words, larger concentrations of the chlorination mixture produce smaller cell
viability, while low concentrations of the mixture tend to produce less cytotoxicity.

As a preliminary analysis of the data, we used the single chemical data to predict
additivity along the chlorination ray and compared the predicted additivity model to the
observed mixture data. Because the response is a percentage of control, it is theoretically

reasonable to restrict the mean response range to the interval between and including 0 and
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100. In other words, at a total concentration of 0 uM, we expect a mean response of
100% of the cell viability of the control group. Additionally, as the total concentration
increases, we expect that the cell viability will decrease until it reaches 0%. In equation
(2.2), u approaches a as ¢ increases. Therefore, we set a equal to 0. Similarly, if we want
to restrict our model so that u equals 100 when ¢ is equal to 0, and we let fy equal 0, then
it can be shown that y should be set to 200. We chose to model the logistic function of
the mean; however, we could have worked with other link functions as well.

There are few concentration groups in the low concentration region, so that a
concentration threshold is not visible in Figure 2.1. However, a number of the single
chemical plots shown in Appendix Al suggest the presence of a concentration threshold,
suggesting that the preliminary analysis of the mixture should involve a threshold. The

single chemical data were used to fit the threshold additivity model of the form

100 , 211 Bat > 6,

200 9
R S s

to predict additivity along the chlorination ray. The threshold parameter under additivity,

Hoaty = (2.15)

dadd, Was found to be statistically significant. Therefore, we decided to incorporate a
concentration threshold in the mixture model to describe the relationship between cell
viability and the concentration of the mixture along the chlorination ray. Figure 2.2A
demonstrates the threshold additivity model based only on the single chemical data for
total concentrations (in uM) along the chlorination ray. Figure 2.2B presents the fit of the

threshold additivity model, based on the single chemical data only, to the mixture data
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observed along the chlorination ray. The threshold additivity model predicts no change
from a background response of 100% for mixture doses less than the concentration
threshold; for mixture doses larger than the concentration threshold, the threshold

additivity model predicts a decrease in cell viability until the response plateaus at 0%.

A. The Threshold Additivity Model, B. The Fit of the Threshold Additivity
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Figure 2.2. Predicted Cell Viability for the Chlorination Ray Under Additivity

As can be seen in Figure 2.2B, the predicted additivity model adequately fits the
chlorination ray data for total concentrations less than approximately 100 pM. For larger
total concentrations, the additivity model predicts a smaller cell viability than indicated
by the observed mixture data. This region of disagreement between the chlorination ray
data and the predicted additivity model may be indicative of an interaction threshold.
Thus, the model chosen to describe this concentration-response relationship is of the form
given in equation (2.6).

It does not appear, however, that the difference between the concentration-response
relationship prior to the interaction threshold and that beyond the interaction threshold is

simply a change in slope. Rather, the temporary increase in observed cell viability visible
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in Figure 2.2B seems to indicate that a higher order term is necessary to describe the

relationship in the third segment. Specifically, we added a quadratic term for added

flexibility in the interaction region, so that the dose and interaction thresholds model is of

the form
100 1 <6add_t
200 { t28 ., h<9 ) 16
= - . .

i 1+eXp{_((Zl,ﬁia.m) t—é'add_,))} O, St<A =10 (2.16)

. 209 ,t2Aand h =10
(Zm ﬂ.a«h))(t_é‘add-/)
l+expq—
L +0 (1-A)+6_, (t-A)

It is common in concentration-résponse modeling for the variability of the response
to change as a function of the mean response. If such non-constant variance exists, quasi-
likelihood methods can be used to fit the model. Figure 2.3 contains plots of the variance
versus the mean cell viability, which can be used to assess the need to use quasi-
likelihood methods in our analysis. It is easily visible in Figure 2.3A that the variability
associated with the response is not constant. In fact, the variability appears to increase
and then decrease as the mean increases. Based on this observation, we found that the

form of the variance function that most adequately fit the data was
2
Var{Y } = T(,u +H 4 j , where k =—124. This function resulted in an R? value of 0.65,

indicating that 65% of the variability present in the response variance can be accounted



36

for by this relationship. A plot of the predicted variance versus the mean cytotoxicity is

given in Figure 2.3B.

A. Variance versus Mean
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Figure 2.3. Change in Variance as a Function of the Mean Response

2.3.3 Results

Quasi-likelihood methods were used to fit the dose and interaction thresholds model,

given in equation (2.16), to the single chemical data and the mixture data simultaneously.

Figure 2.4 displays three plots which allow us to assess the fit of the dose and interaction

thresholds model. Figure 2.4A demonstrates the fit of this model to the data observed

from the chlorination mixture along the ray, as well as the fit of the additivity model

given in equation (2.15). Prediction plots for the single agents are given in Appendix A2.

Figure 2.4B demonstrates the relationship between the observed and predicted responses,

while Figure 2.4C demonstrates the relationship between the predicted responses and

their corresponding residuals.
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A. Fit of Threshold Additivity and Dose and Interaction Thresholds Models to Mixture
Data along the Chlorination Ray
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Figure 2.4. Assessment of Model Fit

As can be seen in Figure 2.4, the dose and interaction thresholds model more closely
represents the relationship depicted by the points on the scatter plot than the additivity
model. Additionally, the plots in Figures 2.4B and 2.4C do not indicate a problem with
the fit of the dose and interaction thresholds model. The relationship between the
observed and predicted responses is increasing, and there is no visible pattern in the

variability of the points about the perfect prediction line. There is no visible pattern in
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the variability of the points about the line where the residual is equal to zero. These
graphical diagnostics did not give us cause to question the validity of the dose and

interaction thresholds model, so we based our inference on it.

2.3.4 Inference

Recall that the primary research objective was to determine whether the nine HAAs
involved in the mixture interact when combined according to the chlorination ray. This
objective can be thought of as a test of the coincidence of the additivity and the mixture
models. For the dose and interaction thresholds model given in equation (2.16) to
coincide with the additivity model given in equation (2.15), restrictions must be placed
on three of the model parameters. In particular, the null hypothesis of additivity can be

written

which can be tested according to the methods described in section 2.2.4 as follows.

The hypothesis of additivity can be tested using a quasi-likelihood ratio test as
described in equation (2.10). The additivity model described in equation (2.15) was fit to
both the chlorination ray data and the single chemical data simultaneously. The achieved

quasi-likelihood is that of the reduced model, Q,,,, while the quasi-likelihood achieved

under the dose and interaction thresholds model is that of the full model, Q,,. The
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resulting quasi-likelihood ratio test was statistically significant (F31765=159.7,
pvalue<0.0001), indicating that there is departure from additivity along the ray.

Alternatively, the hypothesis of additivity can be tested using the Wald test for

nonlinear hypotheses. Let A =[A——5add_t 0. 6

mix mix2

:| be a vector of functions of the

parameter vector B, representing the parameters involved in the null hypothesis. In
particular, let

¥ =h(p)
=[h(B) 7 (B) h(B)]

= A_fa;dd Hmu 0mix2 :
Zﬂiai
i=1
Then D=|:a)v aB.] is the corresponding matrix of derivatives, which is given in

Appendix A3. From the Delta Method, we know that A is asymptotically normally

distributed with mean A and covariance matrix DEXD'. The Wald test statistic of this
hypothesis is of the form given in equation (2.14),

o _(H)(@zp) (i)
o4 3

'B=l§
which has an approximate F distribution with 3 and 1765 degrees of freedom. The result
of the hypothesis test of additivity is statistically significant (F3 765=132.08,
pvalue<0.0001). Therefore, we again conclude that there is departure from additivity

along the chlorination ray.
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Table 2.2 lists the parameter estimates resulting from the fit of the dose and
interaction thresholds model, given in equation (2.16). Each of the single agent slopes is
statistically significant and negative. The parameter associated with the concentration
threshold is statistically significant and negative, indicating a positive estimate for the
concentration threshold of each single agent. The estimate of 6,44 the slope of total
concentration under additivity, which is a function of the single chemical slopes and the
proportions defining the chlorination ray, is —0.0105 (SE 0.0003). The interaction

threshold is statistically significant and positive. The estimate of 6, is statistically

significant and positive. Recall that 8, is the change in slope that occurs for total

concentrations larger than the interaction threshold. Therefore, for total concentrations
larger than 83.2 uM, the slope of the total concentration of the mixture is less negative

than the slope in the additivity region. The estimate of 6,,, is statistically significant

and positive.
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Table 2.2. Parameter Estimates Resulting from Fit of the Dose and Interaction
Thresholds Model to the Single Chemical and Mixture Data along the Ray

Parameter Estimate | Standard Error | P-value
£, (CA) -0.00183 | 0.000077 <0.0001
S, (DCA) -0.00022 | 8.441E-6 <0.0001
B3 (TCA) -0.00051 | 0.000022 <0.0001
B+ (BA) -0.1492 0.00532 <0.0001
Bs (DBA) -0.00293 | 0.000108 <0.0001
bs (TBA) -0.0199 0.000896 <0.0001
B (BDCA) | -0.00199 | 0.000074 <0.0001
ps (DBCA) | -0.00725 | 0.000339 <0.0001
Bo (BCA) -0.00180 | 0.000066 <0.0001
Oadd -0.2692 0.0268 <0.0001
Omix 0.0136 0.000952 <0.0001
Opmix2 -0.00002 | 3.33E-6 <0.0001
A 83.1674 | 6.6572 <0.0001
T 12.47

The process for constructing confidence intervals around the threshold parameters is
similar,  Let () =[67 & -+ & 64, Al Then D=[6f%ﬁ.] is the

corresponding matrix of derivatives, which is given in Appendix A4. The estimates of
the threshold for each single chemical, as well as the concentration threshold and the
interaction threshold for the mixture, are given in Table 2.3. The corresponding standard
errors and confidence intervals are also given. As can be seen in the table, each
confidence interval around the single chemical thresholds has a lower limit that exceeds
zero. It is interesting to note that two chemicals, DCA and TCA, make up 56% of the
mixture; the corresponding concentration threshold estimates for these agents are the
largest in the mixture. Conversely, BA represents only 6% of the mixture, and the

corresponding concentration threshold is the smallest in the mixture, estimated at 1.8 uM.



At the concentration threshold for the mixture, estimated at 25.7 pM, the amount of BA

in the mixture (approximately 1.5 uM) is approaching its concentration threshold.

Table 2.3. Threshold Parameter Estimates

42

Agent Threshold | Standard | Approximate | Approximate
Estimate Error 95% Lower 95% Upper
Confidence Confidence
Bound Bound
| CA 147.23 12.92 121.9 172.56
DCA 1232.07 111.13 1014.11 1450.02
TCA 525.85 49.01 429.72 621.98
BA 1.8 0.16 1.5 2.11
DBA 91.83 7.97 76.21 107.46
TBA 13.54 1.24 11.1 15.98
BDCA 135.53 12.07 111.86 159.2
DBCA 37.12 3.41 30.44 43.8
BCA 149.16 13.1 123.48 174.85
Chlorination Ray Mixture
(Concentration Threshold) 2_5'7 2.21 21.37 30.03
Chlorination Ray Mixture
(Interaction Threshold) 83.17 6.66 70.11 96.22

The lower confidence bound around the concentration threshold for the mixture
along the chlorination ray also exceeds zero. We are approximately 95% confident that,
for the chlorination ray mixture, the response will be that of background for
concentrations below 21uM, the lower confidence bound for the concentration threshold
of the mixture along the chlorination ray. The Wald test for a region of additivity
described in Section 2.2.4 was found to be statistically significant (F; ;765=76.1,
pvalue<0.0001). Therefore, we conclude that there is a significant region of additivity
along the ray. The estimate of Ju4s . the concentration threshold in terms of total
concentration along the chlorination ray, is 25.7 uM (SE 2.21). The estimate of the

interaction threshold, A, is 83.2 uM (SE 6.66). We are approximately 95% confident that
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the chemicals involved in the mixture behave as we would expect under additivity for
concentrations below 70uM, the lower confidence bound for the interaction threshold.
Beyond 96uM, the upper confidence bound for the interaction threshold, we have
detected significant departure from additivity.

According to our model, then, there is no change in cell viability prior to the
concentration threshold, a total concentration of approximately 21 pM, the lower
confidence bound for duu, Conservatively, the agents interact as expected under
additivity for total concentrations less than approximately 70 uM, the lower confidence
bound for A. It may be that the agents interact as expected under additivity for total
concentrations up to 96uM, the upper confidence bound for A. In the region between the
concentration threshold and the interaction threshold, we found that cell viability
decreases as total concentration increases, and that this decrease is significantly different
from zero. Beyond the interaction threshold, we found that both the parameter
representing the change in the slope of total concentration, as well as the quadratic term,
were significant. In this region, the dose and interaction thresholds model predicts higher
cell viability, or less cell death, than that predicted by the additivity model. This
indicates that an antagonistic relationship exists among the nine HAAs involved in the

chlorination ray when the mixture is administered at a concentration larger than 96uM.

2.3.5 Design Consideration
We have seen that the experiment performed along the chlorination ray was

sufficient to support the dose and interaction thresholds model and to demonstrate
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departure from additivity. The mixture experiment performed was fairly large, including
15 concentration groups, spaced throughout the entire concentration range. Each
concentration group contained between eight and 32 observations, for a total of 327
observations in the mixture experiment. Studies this large require a tremendous amount
of resources and are rarely seen in the literature.

A goal of mixtures research, then, should be to design mixture studies that are
feasible, with respect to the available resources, but are sufficiently powerful to
investigate the possible interactions among a mixture of a large number of chemicals
along a fixed-ratio ray. Consider the dose and interaction thresholds model, for instance,
which states that the relationship among the chemicals is that of additivity for doses
smaller than the interaction threshold. While both single chemical data and data from the
mixture ray are used to fit the dose and interaction thresholds model, the support of the
additivity region comes mainly from the single chemical data. With preliminary
information about the interaction region, the optimal design for the dose and interaction
thresholds model should take into account the single chemical data that is available and
focus on the interaction region.

Statistical methodology can be used to find the optimal experimental design for
supporting the dose and interaction thresholds model, as well as for testing the hypothesis
of additivity. Optimal design strategies require a prior hypothesis regarding the shape
and the location of the interaction region. Therefore, it is of interest to determine which

features of the dose-response curve form the basis for the optimal experimental design.
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24 Optimal Experimental Designs

The experimental design used to generate the data must be sufficient to support the
model intended to describe the dose-response relationship. In the chlorination ray
example, the mixture data included 15 concentration groups, which were roughly equally
spaced throughout the experimental range. The model we intended to fit, the dose and
interaction thresholds model, was made up of three segments, two of which received
most of their support from single chemical data that had been previously collected. The
use of design criteria to determine the optimal experimental design, then, may have
allowed the experimenter to collect the information necessary to support this model with
fewer concentration groups and/or fewer observations.

Consider the situation described in Section 2.3.1, the chlorination ray example. In
this example, the chlorination process results in a mixture of nine HAAs, which combine
according to the chlorination mixing ratio, or chlorination ray. The primary research
objective is to determine whether these HAAs interact when combined in this manner.
Sufficient single chemical data are available, for each of the nine HAAs of interest, to
model the relationship between concentration and cell viability under the assumption of
additivity. The plots of the single chemical data are given in Appendix Al.

Cell viability decreases as the concentration increases, regardless of the single
chemical administered. In addition, a number of the single chemical plots indicate the
presence of a concentration threshold. Since the response is a percent of control, it is
theoretically reasonable to restrict the range of the response to the interval between and

including 0 and 100. Let
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— 9
Hiadar = 200 S x5 (2.17)

describe the concentration-response relationship expected under additivity. This model
indicates that there is no change in cell viability prior to the concentration threshold.
Beyond the concentration threshold, the agents behave under the assumption of

additivity. The additivity model in equation (2.17) is equivalent to

100, t<o

add_t

Haday = 200 1>6 (2.18)
1+ exp{_(gadd (’ - 5add'_t))} 5 s

along the chlorination ray. The additivity parameters can be estimated from the single
chemical data.

The stability of the parameter covariance matrix was initially of concern, because the
determinant of the estimated parameter covariance matrix under the assumption of
additivity was very close to zero. The fit of the additivity model resulted in variances
less than 10°® for all but two parameters. In many instances, these variances are as small

or smaller than what the computer considers to be zero. Therefore, in order to stabilize

the estimate of Var {fi}, it was necessary to change the units associated with the single

chemical data. The single chemical data presented in Appendix Al was expressed in
micromoles (uM).  To find the optimal experimental design, the data were expressed in

10* M (10" mM). Modifying the units associated with the single chemical data
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improved the stability of the parameter covariance matrix, since it increased )Var {ﬁ}’

Therefore, it was determined that the instability of the parameter covariance matrix was
not due to over-parameterization of the model but to the small variances associated with

the parameter estimates. However, while this change in metameter increased the stability

of Var {ﬁ} , it did not solve the problem entirely.

Changing the units increased the variances associated with the slope parameter
estimates as expected; however, the change in units decreases the concentration range,
which decreases the interaction threshold. This decrease in the interaction threshold is
associated with a corresponding decrease in the variance associated with the estimate of
the interaction threshold, leaving us with a small variance problem similar to that seen in

the additivity analysis conducted in uM. Therefore, we reparameterized the mixture

model by setting A = Am/lOOO' Reparameterizing the model so that we estimate A,

rather than A, reduces the range of the variability associated with the parameter estimates.

These changes together give us a more stable parameter covariance matrix, where

(Var {ﬁ}} is larger than 1, on which to base our design criterion.

Using the quasi-likelihood methods described in Section 2.2.3, we fit the additivity
model given in equation (2.17) to the single chemical data. The dashed line in Figure 2.5
demonstrates the predicted relationship between cell viability and total concentration,
under the assumption of additivity, along the chlorination ray. Suppose that it has been

hypothesized that the nine HAAs involved in the chlorination ray interact when
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administered in large concentrations. Specifically, it has been hypothesized that the true

concentration-response relationship is better described by the solid line in Figure 2.5.

Dashed Line: Additivity Model, Solid Line: Hypothesized Mixture Model
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Figure 2.5. Hypothesized Relationship between Cell Viability and Total Concentration

It should be noted that we have single chemical data to support the additivity region
of the hypothesized mixture model; we are using this single chemical data to design a
mixture experiment. From this single chemical data, we have estimated the slope
parameters for each of the nine chemicals under the assumption of additivity, and we
have hypothesized parameter values for the interaction region. The parameter estimates
resulting from the fit of the additivity model to the single chemical data are given in
Appendix AS.

We restricted the concentration range of the mixture experiment. As can be seen in

Figure 2.5, the hypothesized model plateaus at approximately zero for concentrations

larger than 0.07 10*M. We allowed the concentrations in our experiment to iterate as
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high as 0.1 10*M. If we allowed the concentrations to iterate much larger than this
value, the predicted response is essentially zero, which is problematic for the computation
of the covariance matrix. Lastly, because we understand that a mixture experiment
would not be conducted without a control group, we forced our design to include a
control concentration. That is, the first concentration point in each design is always zero,
though the proportion of subjects included at the zero concentration iterates within the
design search.

Following Casey et al. (2005), we used the Nelder-Mead Simplex Algorithm to find

the concentrations, d={d, d, - d,}, and the proportion of the sample allocated to
each concentration, q= {q1 q, - qm}, that minimize the appropriate objective

function. A SAS macro was written to find the optimal design for a number of starting
values, under a number of design criteria. The corresponding SAS code is given in
Appendix A6.

We considered the D-optimal design criterion as well as the Ds-optimal design
criterion. We also considered a design criterion based on the hypothesis of additivity.
Each design criterion is based on the estimate of the covariance matrix of the model

parameters,
Var{B} =2 = 7(FV'F), 2.19)
where the matrices F and V are as defined in Section 2.2.3.

Consider a mixture experiment with n, observations taken at =1, ... , m design

points, and recall that there are n; observations from the single chemical experiments.
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The concentration values and the number of observations at each design point are

represented in the F matrix, which is defined as

o (B)/oB
: n,xp
ou, (B)/op
o, (B)/ 0B
f n X p
o, (B)/op
6 o * .(B)/oB

Oty (B)/@B l
a,uzn2 (B)/@B

n,xp

Otty, (B)/ OB |
: on, X p

| Ot (B)/ OB

The total number of observations to be included in the mixture experiment, then, is

n= Zn, , and N=ngtn is the total number of observations to be used in the analysis. For

r=1

the dose and interaction thresholds model described in equation (2.16) and shown in

Figure 2.5, p is 13. The derivatives contained in the F matrix are given in Appendix A7.
The derivatives for the ng observations associated with single chemical data are fixed.

The derivatives for the n observations associated with the mixture experiment will iterate

within the Nelder-Mead Simplex Algorithm, which will determine the concentration

associated with each of the m design points, d,, and the allocation of observations to each

design point, ¢,, ¥=1, ..., m. Since the number of observations at the A design point



51

depends on the allocation of observations at the ™ design point, the number of
observations at each design point will also iterate. The concentration and the allocation
of observations that minimizes the design criterion is the optimal » point design.

For a given n, the D-optimal design is based on the proportion of observations at
each concentration, rather than the number of observations at each concentration. In
other words, the optimal design is not dependent on the number of observations available
for the mixture experiment. This allows the experimenter to use the optimal design to
determine the sample size needed for the mixture experiment to achieve a given power.

We began our search for the optimal designs with an eight point design. Recall that
the results of Nelder-Mead can be somewhat dependent on starting values; to account for
this, we used a grid of starting values to search for the optimal r point design. The
starting values for the eight point design included two concentrations prior to the
concentration threshold, two concentrations between the concentration threshold and the
interaction threshold, and four concentrations beyond the interaction threshold. We
considered 32 such sets of starting values. Each set of starting values was provided to the
macro, and a candidate optimal design was reached in each case. The candidate optimal
design with the minimum optimization criterion was considered to be the optimal » point

design.

2.4.1 D-optimality

The D-optimal design is the design that minimizes the generalized variance, defined

as the determinant of the covariance matrix of the model parameters,

Var {ﬁ}‘ . The D-



52

optimal designs are given in Table 2.4, where d represents the vector of total
concentration locations and q represents the vector of corresponding proportions. As can
be seen in Table 2.4, the D-optimal eight point design contains three design points that
are associated with less than 0.5% of the available sample. This suggested that eight
concentration groups were not necessary to support the model. Therefore, our starting
values were reduced to a seven point design. Following the same procedure used to find
the D-optimal eight point design, a D-optimal seven point design was found. Similar to
the eight point design, the D-optimal seven point design indicated that seven
concentration groups were not necessary to support the model. The D-optimal six point
design, as well as the D-optimal five point and four point designs, led to the same
conclusion. The D- optimal four point design, however, could not be reduced, because
three design points are necessary to support the quadratic term in the interaction region.
The design associated with the minimum determinant of the covariance matrix, among
the optimal designs found in our research and presented in Table 2.4, is the D-optimal

four point design, which results in a generalized variance of 3137.72.
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Nuronfber Design: {d} Gene.ralized
Points q Variance
0  0.0002 0.0056 0.0065 0.0080 0.0248 0.0470 0.0475
8 4007.27
0.001 0.003 0.068 0.000 0.224 0317 0290 0.097
. 0  0.0028 0.0080 0.0081 0.0237 0.0242 0.0468 3405.10
0.000 0.019 0.297 0.017 0.187 0.212 0.269 '
0  0.0080 0.0080 0.0244 0.0470 0.0472
6 3191.29
0.003 0.226 0.137 0.285 0.233 0.116
5 0  0.0080 0.0237 0.0467 0.0469 3139.65
0.000 0.334 0.337 0236 0.093 '
A 0  0.0080 0.0241 0.0468 313779
0.001 0338 0325 0.337 '

The D-optimal design, in relation to the hypothesized dose and interaction thresholds

model, is presented in Figure 2.6. The concentration and the proportion of observations

allocated to that concentration are given in the table next to the plot. The first design

point represents the control group, though it is not required by the optimal design. It is

interesting to note that the second design point is located on the hypothesized interaction

threshold. All remaining design points are located in the interaction region, which is not

surprising since the additivity region receives most of its support from the single

chemical data. The Ds-optimal design, which minimizes the determinant of the subset of

the covariance matrix related to the interaction parameters, yields a similar result.
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Total Concentration along the Chlorination Ray (107-4 M)
Figure 2.6. The D-Optimal Design for Supporting the Hypothesized Dose and Interaction
Thresholds Model

2.4.2 Optimality with Regard to the Hypothesis Test of Additivity
The additivity optimal design is the design that minimizes the determinant of the
covariance matrix associated with the hypothesis test of additivity. Recall from Section

2.3.4 that the hypothesis test of additivity for a model of the form given in equation

(2.16) is
A= 5add,t
H,:<6, =
0mix2 =0

Also recall, however, that we have reparameterized the model to allow A = AM%OO‘

Therefore, the hypothesis of additivity on which the additivity optimal design is based is
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Anew —_—
A)OO =8 4
6. =0

0,0 =0

mix

H,: )
which can be tested according to the methods described in Section 2.2.4. Recall from
section 2.3.4 that A is the vector of functions of B that represents the null hypothesis of

additivity. The above null hypothesis, rewritten in terms of A, is H,:A=0. The
additivity optimal design, then, is the design that minimizes the determinant of the

covariance matrix of 4, DED'. The additivity optimal designs are given in Table 2.5,
where d represents the vector of total concentration locations and q represents the vector
of corresponding proportions.

The additivity optimal eight point design suggested that eight concentration groups
were not necessary to support the model. Therefore, our starting values were reduced to
a seven point design. Following the same procedure used to find the additivity optimal
eight point design, an additivity optimal seven point design was found. Similar to the
eight point design, the additivity optimal seven point design indicated that seven
concentration groups were not necessary to support the model. The additivity optimal six
point design, as well as the additivity optimal five and four point designs, led to the same
conclusion. Again, however, the additivity optimal four point design cannot be reduced,
because three design points are necessary to support the quadratic term in the interaction

region.
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Table 2.5. Additivity Optimal Designs for the Hypothesized Dose and Interaction
Thresholds Model

Number d '
of Design(s): { } }DZ D }
Points 9
g 0.0026 0.0050 0.0080 0.0080 0.0241 0.0497 0.0505 0.33175
0.008 0.030 0.003 0.147 0.219 0224 0.237 0.132 )
0 0.0005 0.0008 0.0081 0.0248 0.0488 0.0492
7 0.53766
0.003 0.046 0.110 0.203 0.230 0.291 0.117
0 0.0080 0.0081 0.0247 0.0500 0.0518
6 0.31714
0.016 0270 0.130 0.263 0.200 0.120
5 0 0.0080 0.0244 0.0284 0.0502 031127
0.002 0.442 0.190 0.037 0.328 ’
4 0 0.008 0.0261 0.0514 0.31941
0.003 0.417 0270 0.310 )

The design associated with the minimum determinant of the covariance matrix
associated with the nonlinear contrast representing additivity, among the optimal designs
found in our research and presented in Table 2.5, is the additivity optimal five point
design, which results in a determinant of 0.311. The additivity optimal five point design
suggests that five points are not necessary to support the dose and interaction thresholds
model specified under our hypothesis; in fact, the control concentration that we have
required to be included in the design is not necessary, requiring 0.2% of the study sample
size. However, when we simplified to the four point additivity optimal design, we saw an
increase in the determinant. The additivity optimal design, in relation to the hypothesized
dose and interaction thresholds model, is presented in Figure 2.7. The concentration and

the proportion of observations allocated to that dose are given in the table next to the plot.
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Figure 2.7. The Additivity Optimal Design for the Hypothesized Dose and Interaction
Thresholds Model
The first design point represents the control group, though it is not required by the
optimal design. It is interesting to note that the second design point is located on the
hypothesized interaction threshold. All remaining design points are located in the

interaction region, which is not surprising since the additivity region receives most of its

support from the single chemical data.

2.4.3 Additivity Optimal Designs for the General Case

Additivity optimal designs for the general cases of synergism and antagonism, where
no quadratic term is included in the third segment of the model, were constructed as well.
We have seen that the additivity optimal design includes only five design points;
therefore, our search for the general additivity optimal designs began with a five point

design as well. In both the synergistic case and the antagonistic case, the additivity
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optimal five point design suggests that five points are not necessary to support the model.
The additivity optimal five point designs are not much different from a three point
design, with data allocated to doses at the interaction threshold and higher. The additivity
optimal four point design is not much different from a two point design, with data
allocated to doses at the interaction threshold and higher. The same is true for the
additivity optimal three point design. While the three point design does not require the
use of a control concentration, we cannot simplify the design further because two design
points are necessary to support the linear form of the interaction region.

The additivity optimal design, in relation to the hypothesized dose and interaction

thresholds model under the general antagonism assumption, is presented in Figure 2.8.

Dashed Line: Additivity Model, Solid Line: Hypothesized Mixture Model

Triangle: Additivity Optimaol Dose Location

110

= 1001
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S 80 Design
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£ 604 (10*M) (%)
© 50 0 0.2
- 40 0.0080 65.4
: 30; 0.0613 34.4
_ 20
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0]

0.000.

Total Concentration along the Chiorination Ray (107-4 M)

Figure 2.8. The Additivity Optimal Design in the General Antagonism Case

The additivity optimal design, in relation to the hypothesized dose and interaction

thresholds model under the general synergism assumption, is presented in Figure 2.9.
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Figure 2.9. The Additivity Optimal Design in the General Synergism Case
In both cases, the first design point represents the control group, though it is not
required by the optimal design. It is again interesting to note that the second design point
is located at the hypothesized interaction threshold. The remaining design point is
located in the interaction region, just before the response reaches a plateau at its

minimum.

2.5 Conclusion

Ray designs are an efficient method for studying a mixture of a large number of
chemicals that appear in a fixed mixing ratio. The dose and interaction thresholds model
can be used to describe the relationship between the mixture, in terms of total dose, and
the observed response. The hypothesis of additivity associated with this model is a
nonlinear contrast of model parameters, which can be tested using either a Wald test or a

quasi-likelihood ratio test. When the null hypothesis of additivity is rejected, the
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investigator can make inference regarding the location of the departure from additivity.
We can test the equality of the dose threshold and the interaction threshold; if the
interaction threshold is significantly larger than the dose threshold, then a significant
region of additivity can be claimed. The dose and interaction thresholds model is
complicated in its parameterization, however, and it is important that the experimental
design is sufficient to support the fit of the model. For example, if the hypothesized
interaction region involves a quadratic term, the design must include at least three design
points in that region in order to estimate the model parameters associated with
interaction.

Statistical methodology can be used to find the optimal experimental design for
supporting the dose and interaction thresholds model, as well as for testing the hypothesis
of additivity. Because this model uses single chemical data to support the region of
additivity, the optimal designs require support only in the area around the hypothesized
interaction threshold and beyond. Regardless of the shape of the interaction region, the
first required design point is located at the hypothesized interaction threshold. For
quadratic interaction regions, a point just beyond the peak of the response within the
interaction region is required, as well as a point just before the response achieves a
plateau at its minimum. For linear antagonism regions, a point just before the response
achieves a plateau at its minimum is all that is required by the optimal design. The same
is true for linear synergism regions.

The optimal designs previously described included a control dose, though it was

found to be unnecessary since it required a small proportion of the total sample size.
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Investigators may prefer a design that includes more dose groups than those presented
here, to allow for verification of the shape of the mixture dose-response curve.
Augmenting the optimal designs, however, does not preserve optimal properties. Parker
and Gennings (2006) developed a penalized optimal design criterion, which can be used

to incorporate such verification groups into the design using desirability functions.



Chapter 3
The Flexible Single Chemical Required (FSCR) Method for Detecting

Departure from Additivity Along a Fixed-Ratio Mixture Ray

3.1 Introduction

In the previous chapter, we found the optimal design for testing for departure from
additivity using the dose and interaction thresholds model. In Chapter 4, we develop
designs based on the Flexible Single Chemical Required (FSCR) method for detecting
departure from additivity, which was developed by Gennings et al. (2004, 2006) and
illustrated in Crofton et al. (2005). The example that serves as the motivation for this
research was described in Gennings’ et al. (2006). Gennings et al. found significant
departure from additivity in a mixture of 18 polyhalogenated aromatic hydrocarbons
(PHAHSs). The FSCR interaction threshold model was fit to the fixed-ratio mixture ray,
and the estimate of the interaction threshold was found to be positive. Gennings et al.
verified the adequacy of the model fit by visually comparing the predicted model to the
observed dose-response relationship. A quasi-likelihood ratio-based confidence interval
was used to describe the location of the interaction threshold; this confidence interval
included zero, so the authors were unable to conclude that a region of additivity exists

along the ray.

62
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Since Gennings et al. (2005) found no problem with the adequacy of the model fit,

there are two possible explanations for the width of the confidence interval around the
interaction threshold. The first explanation is that there is no interaction threshold along
the fixed-ratio mixture ray. If this is the case, the authors’ conclusion is satisfactory. The
second, and perhaps more troublesome, explanation is that the study did not have
sufficient power to detect a significant interaction threshold. If this is the case, the
experimental data does not permit an adequate answer to the question at hand. In order to
determine which explanation drives the inclusion of zero in the confidence interval
around the interaction threshold, we can use statistical criteria to determine the optimal
second stage design. These criteria will incorporate the data from, and the analysis of]
the original experiment to find the optimal location and allocation of the second stage
design points.

In order to understand the intricacies associated with developing optimal designs for
the FSCR method of analysis, it is important to understand the FSCR method itself. The
goals of Chapter 3 are to familiarize the reader with the FSCR method of detecting
departure from additivity, developed by Gennings et al. (2004, 2006), and to describe in
detail the analysis of the PHAH mixture presented in Gennings et al. (2006). For
convenience, we will not continue to reference the FSCR papers of Gennings et al. (2004,
2006). However, it should be kept in mind that we present Chapter 3 not as new
research, but as the basis for the new methodology presented in Chapter 4. The goal of
Chapter 4 is to develop the optimal design for the support of the FSCR interaction

threshold model described in Gennings et al. (2006).
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3.2 Motivation

The usual methods for predicting additivity among a mixture of ¢ agents rely on a
single model that includes terms for each of the active single agents (e.g., Casey et al.,
2004; Gennings et al., 2005). Such a model implies that certain features of the model are
similar across all of the single agents. If a plateau parameter, for instance, is included in
the model of the single agents, the usual additivity model requires that the true value of
the plateau parameter is the same for each of the single agents. Often, however, this is
not the case.

Our analysis of mixture data generally begins with a visual inspection of the data, by
plotting the dose-response relationship exhibited by the raw data. This allows the
researcher to make more informed decisions regarding the type of analysis to be
performed — what form the model should take, whether additional nonlinear parameters
should be included, etc. In the PHAH example provided in Section 3.3, it is evident from
the graphs that a single plateau parameter is not sufficient to accurately describe the
single agent data. The FSCR method allows the researcher to predict additivity while

incorporating the different plateaus associated with the single agents.

3.3 Methodology Review
The goal of this section is to review the methodology associated with the FSCR
method for detecting departure from additivity. In Section 3.3.1, we describe the model

definitions and associated notation. In Section 3.3.1.1, the process for modeling the
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single agent dose-response data and the mixture data, which constitutes the full model, is
described. Based on the single agent models and Berenbaum’s interaction index, the
FSCR model for depicting additivity is described in Section 3.3.1.2, and the FSCR
interaction threshold model is described in Section 3.3.1.3. Lastly, we discuss the
complicated nature of the estimation process in Section 3.3.2 and describe the associated

inference in Section 3.3.3.

3.3.1 Model Definitions

Consider the situation where the mean response can be represented by any nonlinear

function of the form a +yF (g (1)), where F (e) is monotone, so that the inverse exists.

For decreasing dose-response relatioﬁships, F (0) is any specified, decreasing, sigmoidal
function that takes on values between zero and one. For increasing dose-response
relationships, F (0) is any specified, increasing, sigmoidal function that takes on values
between zero and one. As is common in dose-response modeling, we consider the quasi-

likelihood approach, where it is assumed that Var {Y'} =7V (u).

3.3.1.1 The Full Model
The single agent models form the basis for the FSCR model. We begin by defining a

model for each of the single agents and the fixed-ratio mixture ray, as follows. Let

a +y;, x <0,

H ={a,~+}’,-F(,Bi(x—5i)), x.>_5,. (31)
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for i=1, ..., ct+1. Following this notation, i=1, ..., ¢ represents the ray for each of the ¢
single agents, and i=c+1 represents the fixed-ratio mixture ray under consideration.

h

Along the i" ray, the parameter f, represents the slope, &, represents the unknown

threshold, ¢, represents the unknown minimum response, and y, represents the unknown

range of the response.

3.3.1.2 The Dose Threshold Additivity Model
Recall that the basic dose threshold additivity model for a mixture of ¢ agents
consists of two segments. For decreasing dose-response relationships, the threshold

additivity model is written as follows.

a+yF (»Bm)a Zﬂixi > G pa
i=1
Hoga =

c

a+7F[/Boz +Zi8ixiJ’ Zﬂi‘xi < 6
i1

i=1
To ensure that the additivity model is continuous at the dose threshold, J,,,, we set
Bo1 = By, + 9,4, - This continuity constraint requires that B, = B, —9,,,, and the model
then becomes
a+ 7F(1801)’ Zﬂi'xi > 644
i=1

/’ladd =

a+ VF(ﬂm + Zﬁixi _511de’ leixi S
i1 i

This is the usual form of the threshold additivity model. An assumption that is

implicit to this model, however, is that the nonlinear parameters required to describe the
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dose-response relationship of the mixture, @ and y, are the same for each of the ¢ single
agents and the mixture. For instance, the above additivity model assumes that the

minimum response is the same for all ¢ agents and the mixture,ie o, =, =...=a, = .

c

If this assumption is not valid, then the above additivity model is not appropriate.

3.3.1.3 The FSCR Additivity Model
Recall, however, that the basic form of additivity is given by Berenbaum’s
interaction index. If equation (1.1) is true, if the interaction index equals one, then there
is no interaction among the ¢ agents in the mixture. Furthermore, based on the single

agent models given in (3.1), we know the form of E,, the concentration/dose of the i
agent alone that yields a given response. Rewriting equation (3.1), we see that

F—l(ﬂ[_aij
E :—}/l-*'é‘l, izl,...,c

i
i

is the concentration/dose of the ;™ agent alone that yields response M

We can rewrite the interaction index in terms of the single agent model parameters,

where u is a given response of interest and is constant across the ¢ single agents. Then

i | TG
Vi

(4 xi B [4 xi _
;E—_Z [ j =1 (3.2)
T.}.é‘i

indicates an additive relationship among the ¢ chemicals in the mixture. Recall, however,

that we are interested in defining additivity along a fixed-ratio mixture ray; therefore, we
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know that x; = a;t, where ¢ is the total dose of the mixture along the fixed-ratio ray. As

such, equation (3.2) can be rewritten

[4

at a,
: =t : =1.
;F—l(ﬂ_a,] iz:;Fl(#—aij
——ﬂy‘ +4, —ﬂ% +6,

This equation represents the contour of constant response, which is planar under
additivity. The above equation implies that the additive relationship between total dose
and the mean response along a fixed-ratio mixture ray can be implicitly stated as follows.

For a specified value of the mean x,

is the corresponding total dose under additivity. The general form of the FSCR additivity

model, then, can be written in the following manner.
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@ addy T Vicada) X; < 6i(add)
, i=1,.,c
Qiaaay T Vicadar F (ﬂi(add) (x = O (ada) )) , X2 §i(add)
- -1
=1 (3.3)
c a
Heaaay 2 Laday (:u(add)) = z : , Ii=c+1
i=1 F [:u(add) = Xiadd)
Y itadd)
+ G aaa)
| L ﬂi(add) ]

It is important to note that the subscripts on the slope and threshold parameters associated
with the single agents have been modified from the full model. The subscript (add)
indicates that these parameters are estimated under the constraint of additivity, using both

single agent and fixed-ratio mixture ray data.

3.3.1.4 The FSCR Interaction Threshold Model
The FSCR interaction threshold model is an extension of the FSCR additivity model
in equation (3.3), which divides the model into two segments. The model specifies that,
for total doses smaller than the interaction threshold, the relationship among the agents in
the mixture is that of additivity. This first segment is defined by the implicit function
discussed in the previous section. Beyond the interaction threshold, the model allows for
a departure from additivity. This segment is defined by an explicit function that

describes the departure.
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Along the fixed-ratio mixture ray, let A be the interaction threshold parameter, and

let u, be the mean response at the interaction threshold as predicted under additivity.

Then the FSCR interaction threshold model is defined as follows.

A=) a,

1

Xiaddy T Viqaaay> X; < 5i(add)

ai(ada’) + 7i(add)F(ﬂi(add) (x - 51(.:.1(1)))’ X 2 5i(add)

-1

c
{/u(add) 3 i (/u(mld)) =
i=1 F [/u(add) - ai(add)J

7i(ada')

i Baaay
@; +(luA _ai)F('Bi (t_A))’

3.3.2 Estimation

+6

i(add)

t2A

> Ii=c+1

(3.4)

Some discussion regarding the complexity of the implicit model may be helpful here,

prior to the explanation of the estimation process. In an explicitly stated model, we can

easily obtain the prediction for any total dose of interest. These predictions are required

for parameter estimation, whether we use a least-squares approach or a quasi-likelihood

approach. In an implicit model, such as the FSCR additivity model given in equation

(3.3) and the additivity region of the FSCR interaction threshold model, however, we

cannot arrive at the prediction for a given total dose simply by substituting into the

model. Instead, the bisection algorithm is used to find the value of 4, that is most

closely associated with each observed mixture point.
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To start the estimation process, the user must specify a set of starting values for the
model parameters. A direct-search algorithm is used to search the parameter space for
the parameter values that optimize the appropriate objective function. For each set of
potential parameter values, mean predictions are required for each observed mixture point
in order to calculate the objective function. Predictions for observed mixture points
above the interaction threshold are obtained in the usual way, by substituting into
equation (3.4). For observed mixture points below the interaction threshold, a bisection

algorithm is used to find the value of 4, that corresponds to each point. A more

detailed description of the bisection algorithm is given in the following paragraph.

Let ¢4, represent the total dose that is associated with g ,,,, under the assumption
of additivity, and let ¢z, represent the observed total dose along the fixed-ratio mixture
ray. The bisection algorithm searches the values of 4, in the response range and
calculates the associated ¢,,,. Each value f_,,, is compared to the observed mixture

point under consideration, #, . At such time that

Lops —t(add)| <&, where ¢ is a small

positive number, 4, is considered to be the prediction for ¢, , the observed mixture

point under consideration.

3.3.3 Inference
The primary goal of such an analysis is to detect departure from additivity along the

fixed-ratio mixture ray. We can test the null hypothesis of additivity by comparing the
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full model, defined in equation (3.1), to the FSCR additivity model, defined in equation

(3.3), using a quasi-likelihood ratio test.
The properties of the quasi-likelihood ratio test were described in detail in Section

2.2.4. Let O, be the quasi-likelihood achieved under the full model, and let Q,,, be the

quasi-likelihood achieved under the FSCR additivity model. As before, M is the
difference in the degrees of freedom between the FSCR full and additivity models.

Recall that the quasi-likelihood ratio test statistic is

-2 {Qred -0 Sull }
™™

OLRT = : (3.5)

which has an approximate F distribution with M and N-p degrees of freedom.

If the hypothesis test of additivity is significant, then the additivity model is not
sufficient to describe the dose-response relationship along the fixed-ratio mixture ray. In
fact, a significant test of additivity indicates that departure from additivity exists
somewhere along the ray. When we conclude that there is an interaction among the
agents, it is reasonable to question whether the interaction is dose-dependent. In this
case, we fit the FSCR interaction threshold model, which allows for dose-dependent
interaction among the agents in the mixture.

After the FSCR interaction threshold model has been fit to the data, it is of interest to
determine where the departure from additivity exists. Recall that the interaction
threshold is the dose beyond which the agents in the fixed-ratio mixture ray interact and
is represented in the FSCR interaction threshold model by A . If the interaction threshold

is significantly positive, then we can conclude that there is a significant region of
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additivity. Therefore, the one-sided test of H,:A <0 is a test for a region of additivity

along the mixture ray.
Alternatively, the test for a region of additivity can be conducted using the
confidence interval associated with the interaction threshold parameter. Recall that the

quasi-likelihood ratio test is statistically significant for

—2{Qred _Qﬁdl} >F

fM = *MN-pl-a*
All values of A, which do not result in a significant quasi-likelihood ratio test are
plausible values of the interaction threshold.

Let O represent the (p—l)xl vector of model parameters, excluding A, the

interaction threshold parameter. Let 0 and A represent the maximum quasi-likelihood

estimate of @ and A, respectively, found by maximizing the quasi-likelihood with

~
A

respect to all model parameters simultaneously. Let @ represent the maximum quasi-

likelihood estimate of @ associated with a fixed value of the interaction threshold, A,.
Using this notation, the quasi-likelihood ratio confidence interval around A is given by
all A, such that

2 {Q,ed(Ao,a) - quu(A,é)}

p <Fiyopia (s (3.6)

since M=1. If the confidence interval around the interaction threshold does not include

zero, then we can conclude that a significant region of additivity exists. Further, we can
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conclude that the region of additivity is exceeded at the upper confidence bound of the
interaction threshold.

Gennings et al. used quasi-likelihood ratio-based inference due to the complexity of
the FSCR additivity and interaction threshold models. Because additivity is defined
implicitly, the derivatives necessary to estimate a parameter covariance matrix, which is
the basis for Wald-type inference, are not immediately available. An objective of
Chapter 4 is to construct the parameter covariance matrix associated with the FSCR

interaction threshold model.

3.4 Example

3.4.1 Background

Thyroid disrupting chemicals are “xenobiotics that alter the structure or function of
the thyroid gland, alter regulatory enzymes associated with thyroid hormone homeostasis,
or change circulating or tissue concentrations of thyroid hormones” (Crofton et al., 2005).
One such class of thyroid disrupting chemicals, polyhalogenated aromatic hydrocarbons
(PHAHS), induces enzymes which increase the elimination of thyroid hormones such as
thyroxine (T4) from the body. Crofton et al. studied 18 PHAHs individually, as well as a
fixed-ratio mixture based on environmental concentrations, to test for interaction among
the chemicals with respect to the resulting decrease in serum T4 concentrations. The
concentration of each chemical in the mixture was below the concentration that was

found to have significant biological activity, with the exception of PCB126. The
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concentration of PCB126 associated with the highest mixture dose is associated with an
approximate 16% decrease in T4 (Crofton et al., 2005).

This example was illustrated by Gennings et al. (2006), and the following sections
describe the analysis performed by Gennings et al. These sections are included to
confirm those results and to familiarize the reader with the methods used. The primary
research objective is to determine whether the response associated with the fixed-ratio
mixture of 18 PHAHs departs from what is expected under additivity among the
chemicals. If evidence of an interaction is found, a secondary objective is to determine
whether the interaction is dose-dependent. The response of interest is thyroid function, as
measured by serum total T4 as a percentage of control. The observed dose-response
relationship for each of the single chemicals in the mixture is given in Appendix Bl.
Figure 3.1 is the plot of the observed dose-response relationship for the fixed-ratio

mixture ray under study.
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Figure 3.1. T4 vs. Total Dose of the Mixture Along the Ray
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3.4.2 Model Selection

We chose to describe the convexity of the dose-response relationship evident in the
plots using the exponential function, so that F(e)=exp(e). Additionally, because the
T4 response was measured as a percent of control, it is reasonable to restrict the response
to values less than 100. As such, we let y, =100 — ¢, represent the range of the response.
As is often the case in dose-response modeling, the variance of the response changes as a

function of the mean. To account for this non-constant variance in our response, quasi-

likelihood methods were used to estimate parameters and establish model fit. We found
that the form of the variance function that most adequately fit the data was Var{Y } =TU.
This function resulted in an R? value of 0.68, indicating that 68% of the variability

present in the response variance can be accounted for by this relationship. A plot of the

observed and predicted variance versus the mean T4 is given in Figure 3.2.
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Following Gennings et al., the model given in equation (3.1) was fit simultaneously
to all of the single chemical data and the mixture data in terms of total dose, with one
exception. Slope, threshold, and minimum effect parameters for OCDF were not
included in the full model, since OCDF was not dose-responsive (Gennings et al., 2006).
The resulting parameter estimates are given in Appendix B2. Upon inspection, it can be
seen that the agents can be grouped in terms of their minimum response. Agents 1, 2, 6,
12, 13, 16 and 17 appear to plateau in the same region of the response range, as do agents
3, 10, 11, 14 and 15, and agents 4, 5, 7, 8 and 9. Therefore, the minimum response
parameters were combined in this manner in an effort to arrive at a more parsimonious
model. The resulting parameter estimates are given in Appendix B3.

It is important to think through the meaning associated with the threshold parameter
in the dose threshold model of the single agents. If there is no threshold (& = 0), then the
model consists of a single segment which has intercept a+y. If the estimate of the
threshold is positive, then the model consists of two segments. Both segments are
contained in the positive dose range, and the intercept is & +y. If the estimate of the
threshold is negative, however, only one segment of the model is represented in the
positive dose range. The intercept in this case is something less than o +y, so that a
negative threshold estimate corresponds to a downward shift in the intercept. Because
the response is measured as a percent of control, it makes sense that we should require a
100% response at the control dose. Therefore, if a single agent results in a negative
threshold estimate, the threshold is removed from the model to preserve a mean control

response of 100.
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A number of the dose thresholds have negative estimates. Note that the confidence
interval on the dose threshold for agent 15, PCDD, is entirely negative, indicating that

J,s is negative. This threshold was removed, and the model was refit. At this stage in

the model-building process, a number of the threshold estimates were again negative.
However, the upper bound of each of the thresholds in question was in the experimental
range, so they were not immediately removed from the model. Instead, we conducted an
individual search of a grid of starting values for each threshold outside of the
experimental range. The threshold that was most notably negative was removed from the
model. We continued this process until all remaining thresholds had estimates that were
within the experimental region. After the last grid search, two of the remaining threshold
estimates remained negative, althdugh the corresponding confidence intervals both
included zero. As such, these estimates were also removed from the model.

The resulting model is the “full” model (Q,, =371577,df =1308,7 = 3.33), and the

associated parameter estimates are given in Table 3.1. These parameter estimates agree
with those described in Gennings et al. (2006). Plots demonstrating the fit of the full
model to the single chemical data and the mixture data are given in Appendix B4. It is
interesting to note that the confidence intervals around the minimum response parameters
for the single chemicals do not overlap, which supports our decision to group the agents
in this way. All of the slope estimates are statistically significant and negative, with the
exception of the mixture slope and the slope for agent 17, TCDF. However, both the
mixture and TCDF had positive estimates for the dose threshold. Therefore, these

parameters were left in the model. All of the dose threshold estimates are positive,
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though most are not statistically significant. We are able to conclude significant positive
thresholds for agents 4 and 5, PCB105 and PCB118 respectively.

Table 3.1. Parameter Estimates Resulting from the Fit of the Full FSCR Model

Parameter Estimate Standard p-value Approximate 95%
Error Confidence Limits
Q) 5 6 12131617 50.2556 1.4495 <0.0001 47.4120 53.0992
O3 10 11_14_15 30.7384 1.9501 <0.0001 26.9126 34.5642
Qy s 750 14.3276 1.0261 <0.0001 12.3146 16.3406
(o7 42.2947 14.7759 0.0043 13.3070 71.2823
By -0.0608 0.0164 0.0002 -0.0929 -0.0286
B, -0.0378 0.0142 0.008 -0.0657 -0.00989
B, -0.00012 0.000020 <0.0001 -0.00016 -0.00008
B, -0.00083 0.000171 <0.0001 -0.00117 -0.00050
Bs -0.00070 0.000109 <0.0001 -0.00091 -0.00048
Bs -0.7186 .0.2249 0.0014 -1.1598 -0.2774
yim -0.00005 5.541E-6 <0.0001 -0.00006 -0.00004
By -0.00003 3.444E-6 <0.0001 -0.00004 -0.00003
B, -0.00057 0.000061 <0.0001 -0.00069 -0.00045
By, -0.00262 0.000549 <0.0001 -0.00369 -0.00154
B -0.00002 4.815E-6 <0.0001 -0.00003 -0.00001
B, -0.00001 2.525E-6 <0.0001 -0.00002 -7.19E-6
Bi; -0.00003 6.331E-6 <0.0001 -0.00004 -0.00002
B, -0.00067 0.000102 <0.0001 -0.00087 -0.00047
Bis -0.3749 0.0639 <0.0001 -0.5003 -0.2494
Bis -6.5054 2.4139 0.0071 -11.2411 -1.7697
B, -0.3312 0.2744 0.2277 -0.8695 0.2072
B -0.00087 0.000467 0.0622 -0.00179 0.000044
o, 0.3891 1.4995 0.7953 -2.5527 3.3309
o, 3.0937 3.9265 0.4309 -4.6094 10.7969
o, 76.4097 398.4 0.848 -705.3 858.1
S, 513.1 147.9 0.0005 223.0 803.3
s 669.5 147.5 <0.0001 380.2 958.8
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Parameter Estimate Standard p-value Approximate 95 %
Error Confidence Limits
O 0.0427 0.1295 0.7417 -0.2114 0.2968
S 9.8125 25.1041 0.696 -39.4372 59.0621
S, 3227.3 5581.7 0.5632 -7723.0 14177.5
Oi6 0.00361 0.0197 0.8546 -0.0350 0.0423
oy, 1.8587 0.9770 0.0573 -0.0580 3.7755
0 49.4723 74.3290 0.5058 -96.3473 195.3

The FSCR additivity model given in equation (3.3) was fit to both the single

chemical and the mixture data simultancously (Q, =371547.1,df =1311,7 =3.34).

Figure 3.3 compares the fit of the FSCR additivity model to the mixture data with the fit
of the FSCR full model to the mixture data. The associated parameter estimates are given
in Table 3.2, and plots demonstrating the fit of the additivity model to the single

chemical data and the mixture data are given in Appendix BS5.
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Figure 3.3. Fit of FSCR Full Model (solid line) and FSCR Additivity Model (dashed
line) to Mixture Data Along the Fixed-Ratio Mixture Ray




Table 3.2. Parameter Estimates Resulting from the Fit of the FSCR Additivity Model

Parameter Estimate
Q3 61213 16 17 50.8
@3 10_11_14_15 30.9
Oy 5 7809 14.3
B, -0.06027
B, -0.04032
Ji -0.00012
B, -0.00083
Bs -0.00069
B -1.51304
yia -0.00005
i -0.00003
B, -0.00056
Bio -0.00257
B -0.00002
B, -0.00001
B -0.00003
B -0.00068
Bis -0.37213
Bie -7.41317
i -0.4366
5 0.2
0, 3.0
0, 40.4
o, 498.9
o 622.9
O, 0.02
O 33
o, 3099.3
56 0.003
oy, 2.0
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At this point in the analysis, it is reasonable to test the null hypothesis of additivity.

If the test of additivity is significant, then the single chemical parameters under the
assumption of additivity are not sufficient to describe the mixture response. In other
words, a significant test of additivity indicates that there is significant departure from
additivity along the ray. We construct the quasi-likelihood ratio test statistic according to
equation (3.5), where M=3. The quasi-likelihood ratio test of additivity is statistically

significant (F ;5 =5.99, p-value 0.00047). Therefore, we conclude that there is an

interaction among the chemicals along the fixed-ratio mixture ray. Furthermore, Figure
3.3 indicates that the predictions in the low-dose region are similar for the FSCR full
model and the FSCR additivity model. This could indicate the presence of an interaction
threshold.

To determine whether the interaction among the chemicals is dose-dependent, the
FSCR interaction threshold model, given in equation (3.4), was fit to the single chemical

and the mixture data simultaneously (Q, =371577.4,df =1308,7=3.33).  The

associated parameter estimates are given in Table 3.3, and plots demonstrating the fit of
the FSCR interaction threshold model to the single chemical data are given in Appendix
B6. Figure 3.4 compares the fit of the FSCR interaction threshold model to the mixture
data with the fit of the FSCR full model to the mixture data. Figure 3.5 compares the fit
of the FSCR interaction threshold model to the mixture data with what is predicted under

additivity using the FSCR interaction threshold model.



83

Table 3.3. Parameter Estimates Resulting from the Fit of the FSCR Interaction Threshold
Model

Parameter Estimate
a1_2_6712‘13_16_17 50.4
0"3_10_11_14_15 30.9
4 5 7380 14.2
) -0.05927
B, -0.04015
B, -0.00012
B, -0.00081
B -0.00069
B -0.70073
B, -0.00005
B -0.00003
B, -0.00056
B -0.00254
B, -0.00002
B, -0.00001
B -0.00003
B. -0.00068
Bis -0.37296
B -6.39152
B, -0.49315
5, 0.2
5, 3.0
5, 417
5, 495.4
5, 665.1
5, 0.02
S 3.4
5., 3015.0
516 0.004
5, 22
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Figure 3.4. Fit of FSCR Full Model (dashed line) and FSCR Interaction Threshold

Model (solid line) to Mixture Data Along the Fixed-Ratio Mixture Ray
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Agents 1, 2, 6, 12, 13, 16 and 17 plateau at a minimum response of 50.4 % of

control. Agents 3, 10, 11, 14 and 15 plateau at a minimum response of 30.9 % of control.
Agents 4, 5, 7, 8 and 9 plateau at a minimum response of 14.2 % of control. The mixture
ray plateaus at a minimum response of 44.9 % of control. Each of the slope parameters is
negative, as we would expect from the single agent and mixture scatter plots. The

estimate of A, the dose beyond which the chemicals in the mixture interact, is 105.3

pg/kg.

3.4.3 Inference
Recall that the primary research objective was to determine whether the 18 chemicals
in the mixture interact when combined along the fixed-ratio mixture ray. The quasi-

likelihood ratio test of additivity was conducted according to equation (3.5) and was

statistically significant ( F;,;,; =5.99, p-value 0.00047). Therefore, we can conclude that

there is significant departure from additivity along the fixed-ratio mixture ray.

Figure 3.5 demonstrates that the FSCR interaction threshold model falls below the
FSCR additivity model. That is, the mixture results in a greater decrease in T4 than is
predicted using only the single chemicals. Therefore, we describe the interaction among
the chemicals along the fixed-ratio mixture ray as a synergism; the mixture of chemicals
works more efficiently than the individual chemicals predict to decrease T4 as a percent
of control. However, the estimate of the interaction threshold is positive, which is some
evidence that this interaction may be dose-dependent. In other words, there may be a

region of additivity along the ray.
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The test for a region of additivity is based on the quasi-likelihood ratio confidence
interval around A, the interaction threshold. If the confidence interval does not include
zero, then we can conclude that a significant region of additivity exists along the fixed-
ratio mixture ray. The quasi-likelihood ratio confidence interval around the interaction
threshold was constructed using Nelder-Mead to estimate model parameters and the

bisection algorithm to find the endpoints of the interval. The approximate 95%

confidence interval is (0,544) ng/kg. Since the confidence interval includes zero, there

is insufficient evidence for us to conclude that a region of additivity exists along the

fixed-ratio mixture ray.

3.4.4 Design Consideration

We have seen that the mixture experiment performed was sufficient to support the
complex FSCR interaction threshold model and to demonstrate departure from additivity.
However, the data did not support a significant region of additivity, as evidenced by the
inclusion of zero in the quasi-likelihood ratio confidence interval around the interaction
threshold. Because the interaction threshold was not statistically significant, our
secondary goal has not been met. There are two possible reasons for the lack of
significance of the interaction threshold. The first possibility, of course, is that there is no
interaction threshold, so that the departure from additivity exists everywhere along the
fixed-ratio mixture ray. The second, and perhaps more troublesome, possibility is that
the design of the mixture experiment was insufficient to precisely estimate the interaction

threshold, and hence to demonstrate a region of additivity.
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If it is not sufficient to report that departure from additivity exists somewhere along
the ray, if it is also of importance to know whether a region of additivity exists along the
ray, what options are available to the researcher? Certainly the information obtained
from the FSCR interaction threshold analysis can be used to design and conduct a new
mixture experiment. | It is probably not feasible, however, to conduct an entirely new
mixture experiment, without making use of the information available from the original
experiment. Instead, we are interested in supplementing the original mixture experiment
with additional design points, strategically placed to support the precise estimation of the
interaction threshold. Model derivatives are not easily obtained, so a D- or Ds- optimal
design is a complex, but possible, solution.

The following chapter is primarily concerned with overcoming the problems
associated with finding the parameter covariance matrix associated with the FSCR
interaction threshold model. The parameter covariance matrix will be used to develop
optimal designs to support the FSCR interaction threshold model. We will place
additional design points to supplement the original mixture experiment, in an effort to
obtain the most precise estimate of the interaction threshold possible. Designs based on a
Ds-optimality criterion will be considered. When necessary, the desirability of a given

design may be considered to ensure that the resulting designs are of practical use.



Chapter 4
Optimal Design for the Flexible Single Chemical Required (FSCR)

Interaction Threshold Model

4.1 Introduction and Motivation

Recall that the usual methods for predicting additivity rely on a single model that
includes terms for each of the active single agents. The usual additivity model is
assumed to adequately represent the single agent data, as it is often used to describe the
dose-response relationships of the single agents. Such a model implies that certain
features of the model are similar across all of the single agents. If a plateau parameter,
for instance, is included in the model of the single agents, the usual additivity model
requires that the true value of the plateau parameter is the same for each of the single
agents. Often, however, this is not the case.

To allow more flexibility in adequately modeling the dose-response relationships of
the single agents, Gennings et al. (2004) developed the Flexible Single Chemical
Required (FSCR) method. The basis of the FSCR method is the adequate representation
of the single agent dose-response relationships. Additivity is then defined according to
Berenbaum’s interaction index, which can be represented using the parameters associated

with the single agent dose-response relationships. The definition of additivity in the

88
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FSCR methods is equivalent to that in the Single Chemical Required methods; however,
the FSCR methods allow for the estimation of different range and threshold parameters
for each of the single agents and the fixed-ratio mixture ray. Gennings et al.
demonstrated the FSCR additivity model for a mixture of six chemicals (2004) and
demonstrated the FSCR interaction threshold model for a mixture of eighteen PHAHs
(2006).

As shown in Section 3.2, the statement of the FSCR interaction threshold model, as
well as the FSCR additivity model, is complex. As a result, we want to consider
employing statistical optimality criteria to help us determine the optimal experimental
design for supporting these models. We can use a number of statistical design criteria to
find the optimal design, in terms of both the location of the design points and the
proportion of subjects allocated to each design point. A commonly used design criterion
is the D-optimality criterion, which is based on the parameter covariance matrix. The
calculation of the estimated parameter covariance matrix uses the derivatives of the
model with respect to the model parameters. Recall, however, that the active region of
additivity in the FSCR models is implicitly stated. These models cannot be stated such
that the mean is an explicit function of the data; therefore, we cannot take derivatives
with respect to the model parameters in the usual way. It follows that the construction of
the parameter covariance matrix for the FSCR models is an obstacle to employing an
alphabetic optimality criterion.

The goal of this chapter is to develop a method for constructing the parameter

covariance matrix, so that we can determine the optimal experimental design for
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supporting the FSCR interaction threshold model. In Section 4.2, we review the mixture
of 18 PHAHSs described in Chapter 3, which will serve to illustrate our design work, and
address the stability of the parameter covariance matrix associated with the full model.
In section 4.3, we develop the process for constructing model derivatives. In section 4.4,
we present the experimental design that is optimal for improving the precision of the
interaction threshold estimate. The practicality of the optimal experimental design is
addressed in section 4.5, where we consider the penalized optimal design criterion

developed by Parker and Gennings (2006).

4.2 Motivating Example: The Estimation of an Interaction Threshold in a Mixture

of Eighteen PHAHs

In the previous chapter, we described an analysis aimed at detecting departure from
additivity among 18 PHAHs combined according to a fixed-ratio mixture ray. A
secondary goal of the analysis was to determine whether the departure from additivity, if
significant, was dose-dependent. The design of the experiment was sufficient to support
the complicated FSCR interaction threshold model, and we were able to show that
significant departure from additivity exists along the ray. However, although the estimate
of the interaction threshold was positive, the quasi-likelihood ratio confidence interval
includes zero. Therefore, there is insufficient evidence for us to conclude that the
presence of the interaction is dose-dependent.

Since the model adequately describes the dose-response relationship of the mixture,

there are two possible explanations for the width of the confidence interval. One
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explanation is that the true interaction threshold is zero, which means that the interaction
along the fixed-ratio mixture ray is not dose-dependent. The other explanation is more
problematic. It is possible that a positive interaction threshold does exist along the ray,
but the experiment performed was not sufficient to precisely estimate it. The lack of
significance of the interaction threshold may be due to a lack of precision, rather than a
lack of significance. If this is the case, then our second goal has not been met; the data
do not permit an adequate answer to the question at hand.

In the example presented in Chapter 3, we are without a true answer to the question of
the dose-dependent nature of the interaction. We can say that we don’t have enough
evidence to conclude that the interaction is dose-dependent. There is some evidence,
however, since the estimate of the interaction threshold is positive. Therefore, we are
interested in increasing the precision associated with our estimate of the interaction
threshold by adding design points to the original experiment. We want to put these
additional design points in a location such that they optimize the improvement to our
precision.

For ease of discussion, consider a nonlinear exponential threshold model, as
described in Gennings et al. (2006). The full model used to describe each of the 18 single

agents and the fixed-ratio mixture ray is as described in Chapter 3,

100, xX<0,
= , 4.1
# o, +(100-a;)exp{B,(x-6,)} x24, 1)
where i=1, ..., ct+1. Following this notation, i=1, ..., ¢ represents the ray for each of the

¢ single agents, and i=c+1 represents the fixed-ratio mixture ray under consideration.
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This model was fit to the single chemical and the mixture data simultaneously. Let 0

represent the vector of full model parameters, as described in Chapter 3. Since the full

model is stated explicitly, the parameter covariance matrix, Var{é}, can be easily
obtained. We found, however, that the parameter covariance matrix resulting from the fit

of the full model was unstable, in that ‘Var {é}‘ was approximately equal to zero.

In Chapter 2, we addressed this issue by modifying the units associated with the
single chemical data, which improves the stability of the parameter covariance matrix
here as well. Therefore, it was determined that the instability of the parameter covariance
matrix was not due to over-parameterization of the full model but to the small variances
associated with the parameter estimates. The fit of the FSCR full model resulted in
standard errors less than 10™ for nine slope parameters of the 17 active agents. In this
example, however, the dose scale varies widely across the 18 single chemicals.
Experimental doses for PCB105, for instance, range from 0 to 100,000 pg/kg, while
experimental doses for PCDD range only from 0 to 10 pg/kg. Changing the dose scale
increases the variances associated with the slope parameters but decreases the variances

associated with the threshold parameters. Therefore, in order to stabilize the estimate of

Var {é}, we found it useful to reparameterize the model, rather than change the dose

scale. The scaled FSCR full model includes scaled slope parameters for the single agents

and the fixed-ratio mixture ray as necessary.
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4.3 Construction of the Parameter Covariance Matrix for the Scaled FSCR
Interaction Threshold Model

Without loss of generality, let the scaled FSCR full model be described as follows,

100, x <9,
= ) 4.2
# a, +(100—q, )exp ﬂ(x—é',.) , X296, “42)
SF,
for i=1, ... , ctl. The scaling factor is represented by SF,, which is determined

separately for each of the ¢ single agents and the mixture ray. Note that, under the scaled

model, B, is not the slope of the i™ agent but is associated with the slope. If the dose

scales are similar across the ¢ chemicals, such that the scaling factor is unnecessary, let

SF, equal one for all i. In this case, the scaled FSCR full model given in equation (4.2)
reduces to the FSCR full model given in equation (4.1), and S, again represents the slope

of the i™ agent. Scaling the slope parameter does not affect the prediction of the model; it
reduces the range of the variance associated with the slope parameters.

The scaled FSCR additivity model can be written as follows,

100, X <0,

{

14

. , =1,...,
a,+(100—ai)exp{%(x—5,)}, X296, : ‘

]

1=

Haaa) @ Yaaa) (lu(add)) ~| ’ , i=c+l
J + 6, 0u)
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where SF, is as defined above. Then the scaled FSCR interaction threshold model is

written as follows.

100, x <0,
, =1,...,
a,.+(100—a,.)exp{£’é(x—6,)}, x>0, l ¢
~ -1 I
. (4.3)
< a,
/Ja 3ta /Ja = Z ! s t<A .
(add) (dd)( (dd)) S SE o [ﬂ("”")_a"(“"d)J.,.(yi(add) b oi=c+1
i(add) }/i(aa'd) _
am+(/1A— mu)exp{ﬁm(t—A)}, tzA]

Let ¢ = [9 A] represent the px1 vector of model parameters, where 0 represents

the (p-— 1) x1 vector of model parameters excluding A, as described in Chapter 3. Let

the matrix F represent the matrix of derivatives of the mean response with respect to the
model parameters, such that F = [a%(p.] is an nx p matrix. Then the asymptotic

covariance matrix (McCullagh and Nelder, 1989) is

-1

Var{(f)} =7 (F'V_IF) . (4.9
The variance associated with the interaction threshold is given by the (p,p)™ element of
the parameter covariance matrix, Var {}.

To compute the covariance matrix for the parameter estimates, then, we must be able
to take first derivatives of the model with respect to the model parameters. In the case of

the single agents and mixture doses beyond the interaction threshold, for which the model
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is explicitly stated, we can find these derivatives in the usual way. The additivity region
of the model, however, is an implicit function, so we have to take implicit derivatives of
the model with respect to the model parameters.

In section 4.3.1, we develop these implicit derivatives for a mixture of two agents. In
section 4.3.2, we describe how the derivatives are affected by simplification of the

minimum response parameters. Complete model derivatives are given in Appendix Cl1.

4.3.1 Differentiation of the Scaled FSCR Additivity Model for Two Agents
Without loss of generality, consider the situation where c=2, so that, for ¢t <A, the

additivity region of the model is written as follows.

2
,Uaddz‘/ui’t(,u): Z % :

i1 SF, H—a,

Lln| —— |+,
B [(100—(1)]
[ r 71
=<‘u3t(lu)= a + 9, L
Eh{—“‘o‘l ]+5l 5 | =% }La2
L ﬂ] (loo_al) ﬂz (100—6(2) |

Let & = SH In| £ —% +4, and &, = SH In| =% |, J,. Now we can rewrite
ﬁ1 (100—6!1) ﬂz (100—a2)

the additivity region of the model in the following manner.
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Hogg = {/" 3 t(ﬂ) = |:&+a_2i|— }
S & (4.5)
= {/u 3 t(:u) = [alé:l_l + a2§2_1:|_1}

Following Finney (1994), we can take the derivative of both sides of the implicit function
with respect to each of the model parameters. The result of this implicit differentiation is
that we obtain equations that can be solved for the derivative of the mean with respect to

the model parameters.

To find the derivative of the mean with respect to ¢, , we implicitly differentiate both

sides of equation (4.5) with respect to ¢, , as follows.

6t(,u) _ a[aélnl +az§2—1:|_1 :

oa, oa,

Oz_[alé:l_l +a2§2_1:|_2 [(_al 1_2)'2'2'_6’2 - Z_izl}

(4.6)

To complete this equation, we can differentiate & and &, with respect to ¢, in the

following manner.

gi - 5’21 [100_“1]*[(y-al)((loo—al)‘z)+((100—a1)“1)[a"—add—1ﬂ

H—q oq,

As defined, ¢ is a function of only ¢, f3,, and &,. Because ¢, represents the ED, (u),

the 4 contained within & is associated only with the i chemical. Therefore Zﬁ =0.
@

We can substitute these derivatives into (4.6) and solve the resulting equation for ot
al

as follows.
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1

0=:(,u @)((100-a;) )+ ((100- ;) )(@ﬂ—lﬂ
~(u-a,)((100-a)7)=((100-a,) )(a"a"d 1]
)

(1) |

1= (p-a)((100-5) ") = ag‘add (4.7)

~(u-a,)((100-,)7)((100- ;)"
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Ol y4a .
Oa,

A similar result can be shown for

To find the derivative of the mean with respect to S, we can implicitly differentiate

both sides of the implicit additivity function with respect to /£, , as follows.
_ 1711
at(/l) _ aI:a1f1 1 +a2§2 1:|
op, op,

0= —[alfl_l + "2524}_2 [(_al ]—2)2_,2 ma Z_zﬂ

(4.8)

To complete this equation, we can differentiate & and &, with respect to S, in the

following manner.

95, _ Sk 100~ 1 O +(—SF —2)11,{ H—a j
B, B\ K- M 9B, o 100 -«
=§fl_[;jalu—aw+(—SFﬂ_2)ln{ K- ]

B\u-a ) 0B o 100 -«
%,

9B,

We can substitute these derivatives into equation (4.8) and solve the resulting equation

for Ottt as follows.
1

0= _l:alé:l_l +a,,” ]—2 (~ai?) %gl mad 2_22—

——
0

N e\ SE[ 1 Ol [ -2 H—
o e (R 2 ol )

0=£[;]5ﬂ_add+(_gﬂ l—z)ln[ﬂjj
ﬁl H—a 6181 100 -«




99
s )1
100 -« B H—a 6181
slEkln H— (‘u_al)ﬁ]/:a:uadd
g7 \100-¢, S, B,

(‘u—al)ln( H— J= Otaad

ﬂl 100- o aﬂl 42

A similar result can be shown for a—ﬂ‘i‘id— .

2

To find the derivative of the mean with respect to J,, we can implicitly differentiate

both sides of the implicit additivity function with respect to J, as follows.
_ 171
5t(/l) _ 6[a1§, '+ ays, 1:|
09, 09,

(4.10)

To complete this equation, we can differentiate & and &, with respect to 6, in the

following manner.

04 _SK|[ 190-7, U |t
05, B | w-o || 100=7 ) 5

:SFI( 1 jaluadd_*_l

P \u-ay) 96
% _,

09,
We can substitute these derivatives into equation (4.10) and solve the resulting equation

for a’u—”"".
1
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a5, 7t 86,

0= —I:alé:l—l + az‘fz_l:\_z (_al 1_2)% —ad;’ aé‘zil

0= _I:alé:l_l + azfz_1 :I_Z (_al 1—2 ) (%[ 1 ]ag—g.dd + 1]]

H—q
0= (—a —2) SH 1 Otaaa +1
! B \p-a,) 96

0=SFI[ 1 Jaﬂadd+l
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1= SH ( 1 ] Ot
:Bl H—o 651

_(,u_a1):51 _ OHa (4.11)

SF, 85,

.. 0
A similar result can be shown for OHaas. .

2

4.3.2 Differentiation of the Scaled FSCR Interaction Threshold Model with
Combined Minimum Response Parameters
The derivatives specified in the previous section stem from the case where each
single agent has its own «, £, and & parameters. If suggested by the data, however, the
minimum response parameters can be combined to arrive at a more parsimonious model.

In the case where ¢=2, consider that &, = «;. Then we can rewrite

SFy H—a
=20 5,
== “L( )}"
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so that when we implicitly differentiate & and &, with respect to «;, we get the

following. As before,

o0&, SF (100-¢,

o0, B\ u-a (#—al)((IOO—al)‘z)+((1oo—al)“)[a“_add_1ﬂ

oq,

Ol —1 ,
SF [ 100—¢, H-on oq,
B\ r-e ) (100-¢) (100-a,)

and since &, is also a function of ¢,

OH s -1
o, SF, (100—0:1} p-o | oo
5(11 :Bz H—a (100—&1)2 (100—6{1) .
We can substitute these derivatives into equation (4.6) and solve the resulting equation

for OHata as follows.
oa,
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(a:uadd_lJ
~ (u-a) \ o
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100 a1
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OH, 14
Q

In this case, will be nonzero for all agents which include ¢, in the model, and zero

otherwise.

4.4 Optimal Experimental Design for Improving the Precision of the Interaction

Threshold Estimate in the Mixfure of 18 PHAHs

A thorough analysis of the mixture of 18 PHAHs was presented in Chapter 3. Let us
consider the data presented in Chapter 3 to represent the first stage data. In this section,
our attention is focused on the procedure for determining the optimal second stage design
for improving the precision associated with the estimate of the interaction threshold.
Recall that the original analysis of this data involved likelihood-ratio based inference.
We have since developed a method for constructing the parameter covariance matrix.
Since we intend to base our design work on the parameter covariance matrix, we have to
be concerned with its stability. As a result, the analysis on which our design work is
based differs slightly from that presented in Chapter 3.

As discussed in Section 4.2, the dose scale varies widely across the 18 single

chemicals present in the mixture. As a result, the parameter covariance matrix associated
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with the fit of the FSCR full model, given in equation (4.1), was unstable, in that the

determinant was approximately equal to zero. In order to stabilize the parameter
covariance matrix, the scaled FSCR full model, given in equation (4.2), was fit to the
single agents and the fixed-ratio mixture ray simultaneously. Non-unity scaling factors
were used for each single agent with a dose range larger than 1000 pg/kg. After scaling,
the determinant of the parameter covariance matrix associated with the full model is
88.255, which demonstrates considerable improvement in the stability of the matrix. In
addition, as described in Chapter 3, the minimum response parameters were combined to
arrive at a more parsimonious model. The resulting parameter estimates are given in
Appendix C2. Parameter estimates resulting from the fit of the scaled FSCR additivity
model are given in Appendix C3. The parameter estimates resulting from the fit of the
scaled FSCR interaction threshold model are given in Appendix C4.

The D-optimality design criterion is based on the estimated parameter covariance
matrix, which is constructed using hypothesized values of the model parameters.
Because we have estimates of the model parameters from the analysis of the first stage
data, those estimates serve as our hypothesized values. The hypothesized dose-response

relationship is described in Figure 4.1.
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Dashed Line: Additivity Model, Solid Line: Hypothesized Mixture Model
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Figure 4.1. Predicted T4 vs. Total Dose of the Mixture

It should be noted that we have both single chemical and mixture data to support the
hypothesized model parameters. Neither the single chemical data nor the mixture data
from the first stage experiment will be affected by our design work. We are interested in
constructing an optimal design to supplement the data already available.

We required that the covariance matrix of the model parameters be positive definite.
In addition, because we understand that a mixture experiment would not be conducted
without a control group, we forced our design to include a control dose. That is, the first
dose point in each design is always zero, though the proportion of subjects included at the
zero dose iterates within the search algorithm.

Consider a second stage mixture experiment wWith 7,y design Observations taken from m
design points, and recall that there are n; observations from the single chemical

experiments and 7mix originar Observations from the first stage mixture experiment. The
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dose values and the number of observations at each design point are represented in the F

matrix, which is defined as

_ o
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mix _design

in the second stage experiment

The total number of observations to be included in the second stage mixture

m
experiment, then, is 7, g =D .M, » and N=n +n

r=1

+n is the total

mix _original mix _design
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number of observations to be used in the final analysis. For the scaled FSCR interaction
threshold model described in equation (4.3) and shown in Figure 4.1, p is 33. The
derivatives contained in the F matrix are calculated as described in Section 4.3.

The derivatives for the n; observations associated with the single chemical data are
fixed, as are the derivatives for the #mix originai Observations associated with the first stage
mixture experiment. The derivatives for the nuix_design Observations associated with the
second stage mixture experiment will iterate within the Nelder-Mead Simplex
Algorithm, which will determine the dose associated with each of the m design points, z,,
and the allocation of observations to each design point, g,, for =1, ... , m. Since the
number of observations at the »" design point depends on the allocation of observations
at the 7™ design point, the number of observations at each design point will also iterate.

A SAS macro was written to find the optimal design for a number of starting values,
under a Ds-optimal design criterion. Our Ds-optimal design criterion seeks to minimize
the variance associated with the hypothesized interaction threshold, A. The algorithm
searches to find the doses, as well as the proportion of observations allocated to each
dose, that minimize the variance of the interaction threshold. The dose and allocation of
observations that minimizes the variance of the interaction threshold is the optimal m
point design.

For a given #mix design, the Ds-optimal design is based on the proportion of
observations at each dose, rather than the number of observations at each dose. In other
words, while the variance achieved by the optimal design is based on the number of

observations available for the second-stage mixture experiment, the design itself is not.
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This allows the experimenter to use the optimal design to determine the sample size
needed to achieve a given power.

We began the search for the optimal design with an eight point design. The starting
values included four doses prior to the interaction threshold and four doses larger than the
interaction threshold. We considered 32 such sets of starting values. Each set of starting
values was provided to the macro, with an equal allocation of the available sample to the
m design points, and a candidate optimal design was reached in each case. In some
instances, due to the rounding of the sample size allocated to each design point, the
number of subjects required by the design was larger than nuix_design.  When this was the
case for the candidate optimal m point design, observations were removed from the
design point with the largest sample size in order to preserve the sample size associated
with the design. Let us call the variance of the interaction threshold based on the
adjusted samples sizes the modified variance; if no sample size adjustment was required,
the modified variance is equal to the actual variance. The candidate optimal design with
the smallest modified variance is the optimal m point design.

In the case where the optimal m point design required fewer than m dose groups, as a
result of overlapping dose locations or insufficient allocation, we reduced our grid of
starting values to an m-1 point design. The number of design points was reduced until
the design could be reduced no further, either because all remaining design points were
required or because a smaller design was considered unacceptable. The Ds-optimal
designs are given in Table 4.1, where t represents the vector of total dose locations and q

represents the vector of corresponding proportions.
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Table 4.1. Ds-Optimal Second Stage Designs for the Estimation of the Interaction Threshold

The “Actual” design is the actual result of the Nelder-Mead Simplex Algorithm over a grid of starting values. In the
“Practical” design, design points have been collapsed and/or eliminated as indicated by the “Actual” design. The asterisk (*)
denotes that design points have been collapsed in keeping with their location relative to the interaction threshold.

Number ) t .
of Second Stage Design: Variance of the
Points q Interaction Threshold
] 0 389 1053, 1053, 1053, 1059 1166 578.0 s
M 10093 0125 0113 0112 0185 0222 0.105 0.045 '
0 39 105 106 117 578
8 4113.0
_ 0.093 0.125 0410 0222 0.105 0.045
Practical
0 39 105 106 117 578
* 3438.0
0.093 0.125 0.113 0519 0.105 0.045
o] 370 1050 1053, 1053, 1053, 113.4 sLs
M 10001 0156 0.155 0250 0.165 0.157 0.116 '
7 105 113 7041.9
_ 0.001 0.156 0.727 0.116 '
Practical
106 113 ss575
0.001 0.156 0.727 0.116 '
ol 1045 1053, 1054 109.7 257
M3 190020 0.001 0291 0095 0319 0274 '
110
6 4458.6
, 0.020 0.705 0.274
Practical
106 110 323
0.020 0291 0414 0274 '




0 967 999 1055 1068
Actual 3213.9
0.001 0205 0.164 0326 0.305
, 0 97 100 106 107
Practical 3216.6
0.001 0.205 0.164 0326 0.305
0 983 1045 1055
Actual 3195.6
0.001 0.009 0335 0.656
Practical 0 105 106 3200.1
rachieal | 1 20,001 0335 0.656 :
el | 10 1052 1053, 1ss
a1 10120 0255 0.625 :
105 16593.8
0.120 0.880 '
Practical
105 106 s o
0.12 0255 0.625 '
Actual 0 1053, 3428.72
cual 110329 0671 '
0 10 42304.7
_ 0329 0.671 '
Practical
3434.6

< 0 106
0.329 0.671

110
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The Ds-optimal eight point design presented in Table 4.1 appears to be, in reality, a

six point design. There are three dose groups located at the hypothesized interaction
threshold, 105.3 pg/kg. These three design points can be collapsed into one dose group at
105 pg/kg, as described in the table. If we look carefully at these doses, however, we see
that one dose is just below the interaction threshold, and the other two are just above. In
keeping with this distinction, when we round the design points to the nearest integer, the
total dose just below the interaction threshold can be rounded down, whereas the total
dose just above the interaction threshold can be rounded up. This design is also described
in the table and is denoted with an asterisk (*). This allows us to investigate the
importance of their location relative to the interaction threshold, which is an important
distinction. Combining dose groups without regard to their location relative to the
interaction threshold results in a dramatic increase in the variance of the interaction
threshold. Thus, the Ds-optimal second stage design requires data both above and below
the hypothesized interaction threshold in order to precisely estimate its location.
Similarly, the Ds-optimal seven point design presented in Table 4.1 is, practically
speaking, a three point design. The allocation to the control dose is only 0.1% of the
sample, indicating that the control dose is not required by the optimal design. In addition,
there are three dose groups located at the hypothesized interaction threshold, 105.3 pg/kg.
Again, the design can be reduced in one of two ways — we can round the resulting total
doses in the usual fashion, or we can round according to the placement of the design

point with regard to the interaction threshold. As we saw previously, the variance of the



112

interaction threshold increases dramatically when we combine dose groups without
regard to their location relative to the interaction threshold.

Similarly, the Ds-optimal six point design presented in Table 4.1 can be reduced by
removing unnecessary design points and collapsing dose groups that are sufficiently close
together. The design allocates only 0.1% of the sample to a total dose of 4 pg/kg, making
this design point unnecessary. In addition, there are three design points situated in the
vicinity of the interaction threshold. When these groups are collapsed to form one dose
group, the variance of the interaction threshold increases dramatically. If we combine
these groups according to their location relative to the interaction threshold, however,
there is only a slight increase in variance over the Ds-optimal six point design.

The Ds-optimal five point design presented in Table 4.1 is actually a four point
design, as the control dose is not required by the optimal design. The Ds-optimal four
point design is, in reality, a two point design. The control dose is not necessary, and the
design allocates less than 1% of the sample to a dose of 98 pg/kg. The Ds-optimal three
point design contains two design points in the vicinity of the interaction threshold. As
previously described, the variance of the interaction threshold increases dramatically if
we combine these groups without considering their location relative to the hypothesized
interaction threshold. In keeping with our observation that the Ds-optimal design
requires data both below and above the interaction threshold, the Ds-optimal two point
design includes a control group and a dose just above the interaction threshold.

The Ds-optimal second stage design is the design that minimizes the variance of the

interaction threshold. We can see from Table 4.1, then, that the Ds-optimal design is the
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Ds-optimal four point design, which is described in Figure 4.2. The dashed line

represents the additivity model, and the hypothesized mixture model is represented by the
solid line. The dots indicate data available from the first stage of the experiment, and the
triangles represent the location of the design points indicated by the Ds-optimal second

stage design.

A. The Ds-optimal Design Depicted in the | B. The Ds-optimal Design Depicted
Dose Space of the Original Experiment in a Restricted Dose Space

Dashed Line: Additivity Model, Solid Line: Hypothesized Mbdure Model Dashed Line: Additivity Model, Solid Line: Hypothesized Mixture Model
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Figure 4.2. The Ds-optimal Second Stage Design for the Estimation of the Interaction
Threshold

The vertical dotted line in Figure 4.2B represents the location of the hypothesized
interaction threshold.

Though this design may be statistically optimal, there are some practical problems
with its implementation. It does not require the use of a control group, which may be a
problem for some scientists. A toxicologist may not be willing to conduct an experiment
that does not include a control group. A potential solution is to include a control group in
the second stage experiment but to exclude it from the analysis. In other words, we can
compare the response of the controls from each stage for quality control purposes, but we

can analyze the results of the complete experiment without the second stage control
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group. This alone, however, does not completely solve the problems with the practicality
of the Ds-optimal design shown in Figure 4.2. The remaining design points are fairly
close together, so that the design reduces to a single design point. It is unlikely, for
instance, that a toxicologist will be able to distinguish a dose of 104.5 pg/kg from a dose
of 105.5 ng/kg. Many of the designs given in Table 4.1 share these practical problems.
In the next section, we apply the penalized optimality criterion, developed by Parker and
Gennings (2006), to arrive at a second stage design that is more likely to be carried out in

practice.

4.5 Penalized Optimal Design Methodology
Parker and Gennings (2006) developed the penalized optimal design criterion, which

uses desirability functions to penalize impractical experimental designs. Recall that

Q= [0 A] represents the px1 vector of model parameters, where 0 represents the
( p—l)xl vector of model parameters excluding A, as described in Chapter 3. Let

h(t,q, f (q)),m,n) be the value of an alphabetic optimality criterion, such as the Ds-

optimal design criterion used in Section 4.4. As previously discussed, t is the vector of

design points associated with the optimal design, q is the vector of corresponding sample

allocations, m is the number of design points, and n is the sample size available.

mix _design

Let j=1, ..., k represent the k experimental design preferences under consideration.

Each characteristic, p i is transformed into its desirability, d ;» where 0<d ;<. In this

setting, d; =0 indicates that characteristic p; is highly undesirable, and d; =1 indicates
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that characteristic p; is highly desirable. The overall desirability of the & combined

characteristics is represented by
A
D(t,q)=(dd,---d,)*, (4.12)
and the penalty function is represented by 1- D(t,q).

As described in Parker and Gennings (2006), the penalty function is added to the
design criterion to penalize experimental designs, based on the investigator’s pre-defined
experimental design preferences. The penalty function can take on any value between
and including O and 1; therefore, a user-defined scaling constant, A, is used to control the
weight of the penalty function, relative to the minimum optimality criterion. For a given

A, the penalized optimality criterion, as a function of t and q, is written
h(t.q,f (9),m.n)+A(1-D(t,q)). (4.13)
The penalized optimal design is the design that jointly minimizes A (t, q,f ((p),m,n) and

1- D(t,q) for a given value of A.

Parker recommends choosing a value of A in the range where there is stability in the

desirability function and the alphabetic optimality criterion. Parker considers multiples
of min(h (t,q, f ((p),m,n)), the minimum value of the alphabetic optimality criterion, as
potential values for the scaling constant A. The penalized optimal design is found for
possible values of A, where A=/1[min(h(t,q,f((p),m,n))} and A is any positive

number. To choose A, the alphabetic optimality criterion and the desirability function are

plotted against values of A. Parker and Gennings (2006) choose A such that, compared to



116

the optimal design resulting from the alphabetic optimality criterion, there is a sizable
improvement in the desirability function, and the increase in the alphabetic optimality
criterion is minimal. Parker admits that “although absolute optimality properties are lost,
the penalized optimal design is optimal in accordance with design preferences set by the
investigator and the alphabetic optimality criterion” (2005). This tradeoff is reasonable
in situations such as that described in Section 4.4, where certain characteristics of the

statistically optimal design may not be considered reasonable by scientific investigators.

4.5.1 Experimental Design Preferences for the Second Stage Fixed-Ratio
Ray Mixture Experiment of 18 PHAHs

Recall from Section 4.4 that we had a number of practical concerns with the Ds-

optimal second stage designs described in Table 4.1. The Ds-optimal design is the Ds-

optimal four point design, which is described as follows
{t}_{ 0 983 1045 105.5}
q <0.001 0.009 0.335 0.656]°
where total dose is given in pg/kg. First, it should be noted that less than 0.1% of the
sample is allocated to the control dose. Per our personal communication with Dr. Kevin
Crofton, a neurotoxicologist with the Neurobehavioral Toxicology Branch of the
National Health and Environmental Effects Research Laboratory of the U.S. EPA, and
the scientist who conducted the original study, a scientist is not likely to conduct an

experiment that does not include a control group. In addition, the remaining three design

points are located with 10 pg/kg of each other. We are particularly concerned with the
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placement of the third and fourth design points, which are located only 1 pg/kg apart.

Depending on the sensitivity of the equipment used in the experiment, a scientist may not
be able to reliably distinguish 104.5 pg/kg from 105.5 pg/kg.

To address these issues, the penalized optimality criterion (Parker and Gennings,
2006) was used to find the second stage design that minimizes the variance of the
hypothesized interaction threshold while maximizing the desirability of the associated
design. This criterion is based on desirability functions, which capture the investigator’s
experimental design preferences. These desirability functions were determined through
collaboration with Dr. Crofton via personal communication. The logistic function was
used to create our desirability functions, though other functions can be used to achieve
the appropriate shape. Table 4.2 contains plots of these desirability functions. The
experimental design preferences used, and their corresponding desirability functions, are

described below.
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Table 4.2. Desirability Functions for the Penalized Optimal Second Stage Design

Characteristic
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(4)Percentage of the Sample Allocated
Below the Interaction Threshold
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(1) Number of Subjects per Dose Group

This design preference stems directly from the lack of a control group in
the Ds-optimal second stage design. The number of subjects per dose group
can be thought of as a target approach; the allocation of between 10 and 18
subjects per dose group is fairly standard in the toxicological literature. This
target region is captured in the desirability function described by the solid
curve. For experimental designs with more than four design points, this target
range is appropriate, since our design work is based on a second stage sample

size of 100 subjects. For experimental designs with four or fewer design
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points, it is acceptable to have more than 18 subjects per dose group. This
expanded target region is captured in the desirability function described by the
dashed curve. In addition, it is important to note that the target region may
depend on the importance of the particular agent or mixture under study. For
important compounds, the overall sample size may be increased, so it may be
acceptable to increase the number of subjects allowed at each design point.

(2) Dose Spacing (Percent Difference Between Doses)

Due to the accuracy of the serial dilution method of obtaining doses, the
acceptable spacing between dose groups depends on dose region. We
describe dose spacing as the percent difference between two consecutive dose
groups. A smaller percentage is acceptable for doses in the high dose region
than in the low dose region. For instance, a 10% difference is more reliably
detected between doses of 500 and 550 pg/kg than between doses of 50 and
55 pg/kg. After careful consideration, the dose space was divided into three
dose regions, and a desirability function was constructed for each region. The
low dose region requires a large percentage difference between doses, and the
percentage difference required decreases as the dose increases. The
desirability function for doses less than 100 pg/kg specifies that each dose in
this region must be at least 30% larger than the dose below, as shown in the
the solid curve. The desirability function for doses between 100 and 500
ng/kg is a parallel shift to the left, and the desirability function for doses larger

than 500 pg/kg is a further shift to the left.
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(3) Dose Region

Teuschler et al. (2002) commented on the importance of low dose studies.
As such, it may be of interest to restrict the design search to doses within a
particular region of interest. In general, this desirability function represents a
constraint on the dose region. In the mixture of 18 PHAHS, recall that we
have information from the first stage experiment. The FSCR analysis of the
first stage experiment indicated that the interaction threshold is no larger than
544 ng/kg. Therefore, the desirability function representing dose region
restricts the placement of dose groups larger than 550 pg/kg.

(4) Percentage of the Sample Below the Interaction Threshold

If the nonlinear model of interest contains one or more threshold
parameters, used to define two or more regions of the model, it may be of
interest to place dose groups in each region. In the mixture of 18 PHAHs, we
would like to be able to use the data from the second stage to validate our
analysis of the first stage experiment. After the second stage experiment has
been conducted, we are able to compare the data to the model resulting from
our analysis of the first stage data. Ideally, we are looking for the predicted
model to adequately describe the data from both stages. It is important, then,
that the second stage design allocates enough of the sample below the
threshold for us to inspect model fit in the additivity region. The same is true
for the interaction region. The desirability function for the percentage of the

sample below the interaction threshold describes a target region of 30 to 45%.
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As the number of subjects included in the second stage experiment increases,
this desirability curve may shift to the left. For experiments with a large
sample size, we may require a smaller percentage of the sample allocated to a
particular dose region.
(5) Percentage of Design Points Below the Interaction Threshold

This design preference is somewhat related to that described in (4) above,
the percentage of the sample below the interaction threshold. If we are
interested in allocating a certain percentage of the sample below the
interaction region, for validation purposes, we may want to ensure that a
certain percentage of the second stage design points are located below the
interaction threshold. This is to guard against a situation in which 35% of the
second stage sample is allocated below the interaction threshold but to the
same design point. In an experiment with less than ten groups, a roughly
equal distribution of design points above and below the interaction threshold
is appropriate. This gives us a number of validation points in the additivity
region. The desirability function for the percentage of design points below the
interaction threshold describes a target region of 40 to 55% percent. As the
number of dose groups increases, however, this curve will likely shift to the
left. For experiments with a large number of design points, we would require
a smaller percentage of those design points to be allocated in a particular dose

region.
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Preferences for sample size and the number of design points were also considered
initially; however, these cannot be controlled through desirability functions. The
minimum alphabetic optimality criterion depends on both the sample size available and
the number of design points specified. Because these characteristics are pre-specified
and fixed for a given design, we cannot allow them to contribute to the desirability
function.

Five design preferences have been identified for our second stage experimental
design work. The number of desirability functions involved in the design search,
however, is much larger. The target region for the number of subjects allocated to each

dose group involves the use of m desirability functions, one for each design point in the

m-—1 '
study. There are ( 5 ] desirability functions associated with the dose spacing

requirement, since each nonzero dose must be compared with each other nonzero dose.
There are m—1 desirability functions associated with the constraint on the dose region,
since all nonzero doses have the potential to iterate outside of the region. In addition,
there is one desirability function associated with the preference for the percentage of the
sample allocated below the interaction threshold, and one desirability function associated
with the preference for the percentage of the design located below the interaction

threshold. The total number of desirability functions for the second stage design

-1
involving the mixture of 18 PHAHs is k =2m +1+ (mz ](m >2).
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4.5.2. Penalized Optimal Design for Improving the Precision of the

Interaction Threshold Estimate

Following Parker and Gennings (2006), a SAS macro was written to find the optimal
design for a number of starting values, under a penalized Ds-optimal design criteria,
using the Nelder-Mead Simplex Algorithm. The penalized Ds-optimal design criteria
seeks to minimize simultaneously the variance associated with the hypothesized
interaction threshold and the penalty associated with the design. For a given number of
design points m, the value of A is set to one, and a grid of starting values is searched for
the penalized optimal m point design. The value of A is updated, and the same grid of
starting values is searched for the penalized optimal m point design. For each value of
A, both the variance of the hypothesized interaction threshold and the desirability
associated with the penalized optimal m point design are recorded. The desirability and
variance are plotted against values of 4. We choose A to be such that we get a sizable
increase in the desirability of the design, and that the associated increase in the variance
of the hypothesized interaction threshold is considered both reasonable and tolerable to
the investigator. We considered designs consisting of four, six and eight design points.

We began our search for the penalized optimal design with an eight point design.
The starting values for the eight point design included four doses prior to the interaction
threshold and four doses larger than the interaction threshold. We considered eight such
sets of starting values. For a given A, each set of starting values was provided to the
macro, with an equal allocation of the available sample to the m design points, and a

candidate penalized optimal design was reached in each case. As before, in some
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instances, due to the rounding of the sample size allocated to each design point, the

number of subjects required by the design was larger than » When this was the

mix _design *
case for the candidate penalized optimal m point design, observations were removed from
the design point with the largest sample size in order to preserve the sample size available
to the design. Let us call the variance of the interaction threshold based on the adjusted
sample sizes the modified variance, the desirability based on the adjusted sample sizes
the modified desirability, and the objective based on the adjusted sample sizes the
modified objective. If no sample size adjustment was required, then the modified
variance is equal to the actual variance, the modified desirability is equal to the actual
desirability, and the modified objective is equal to the actual objective. The candidate
penalized optimal design with the smallest modified objective was considered to be the
penalized optimal m point design for a given 4. The corresponding SAS code is given in
Appendix CS.

The plot of the achieved variance and desirability versus A for the eight point
penalized optimal second stage designs is given in Figure 4.3. Recall that the variance
associated with the Ds-optimal eight point design is 3413.8, and the corresponding
desirability is 0.13. It can be seen in the plot that the penalized optimal design with
A =0.25 results in a desirability of approximately 0.90, which is a substantial increase
over the Ds-optimal eight point design. The associated variance is approximately 3800,

which is a slight increase over the Ds-optimal eight point design.
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Figure 4.3. Variance of the Hypothesized Interaction Threshold and Desirability vs. A
for the Eight Point Penalized Optimal Second Stage Designs

The plot of the achieved variance and desirability versus A for the six point
penalized optimal second stage designs is given in Figure 4.4. Recall that the variance
associated with the Ds-optimal six point design is 3228.74, and the corresponding
desirability is 0.003. It can be seen in the plot that the penalized optimal design with
A =0.75 results in a desirability larger than 0.90, which is a substantial increase over the
Ds-optimal six point design. The associated variance is approximately 3800, which is a

slight increase over the Ds-optimal six point design.
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Figure 4.4. Variance of the Hypothesized Interaction Threshold and Desirability vs. A
for the Six Point Penalized Optimal Second Stage Designs

The plot of the achieved variance and desirability versus A for the four point
penalized optimal second stage designs is given in Figure 4.5. Recall that the variance
associated with the Ds-optimal four point design is 3195.6, and the corresponding
desirability is 0.00003. It can be seen in the plot that the penalized optimal design with
A =0.75 results in a desirability larger than 0.95, which is a substantial increase over the
Ds-optimal four point design. The associated variance is approximately 3400, which is a

slight increase over the Ds-optimal four point design.
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Figure 4.5. Variance of the Hypothesized Interaction Threshold and Desirability vs.

for the Four Point Penalized Optimal Second Stage Designs

Regardless of the value of m, the number of experimental design points, we saw that

increasing A beyond its chosen value results in further increases in desirability. However,

the increases are slight and are associated with further increases in the variance of the

hypothesized interaction threshold. The penalized optimal second stage designs, based

on the selected A values, are given in Table 4.3, where t represents the vector of total

dose locations and q represents the vector of corresponding proportions. The Ds-optimal

second stage designs are also provided for comparison.



Table 4.3. Optimal Second Stage Designs for the Estimation of the Interaction Threshold
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Number | Optimality d Variance | Desirability
of Criterion | Second Stage Design: {q} of the
Points Interaction
Threshold
Ds 389 1053, 1053, 1053, 1059 116.6 578.0 3413.8 0.128
(4=0) {0 0.125 0113 0.112 0.85 0222 0.105 0.045}
5 [Penalized | (0 659 856 1067 1235 1529 1814 5035 3809.1 0.901
(4=0.25) {oo 0.115 0.145 0.166 0.184 0.145 0.095 0.075}
Ds 0 40 1045 1053, 1054 109.7 32287 0.003
(4=0) {oo 0.001 0291 0.095 0.319 0.274}
O [ Penalized | (0 647 847 1075 1424 1733 3784.3 0.933
(4=0.75) {01 0.175 0.167 0.195 0.195 0.157}
Ds 983 1045 105.5 31956 | <0.001
(4=0) {<0001 0.009 0.335 0656}
* [ Penalized 787 1053 127.8 34313 0.957
(4=0.75) {0153 0250 0.313 0285}
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As can be seen in Table 4.3, the penalized optimal four point design results in the
highest desirability and the lowest variance of the penalized optimal designs. The
increase in desirability of the penalized optimal four point design over the Ds-optimal
four point design is substantial, while the corresponding increase in the variance of the
hypothesized interaction threshold is a mere 7.4%, which is a fairly minimal increase.
Therefore, the penalized optimal four point design, which is described in Figure 4.6, is
the penalized optimal second stage design. The dashed line represents the additivity
model, and the hypothesized mixture model is represented by the solid line. The dots

indicate data available from the first stage of the experiment, and the triangles represent

the location of the design points indicated by the penalized optimal second stage design.

A. The Penalized Ds-optimal Design
Depicted in the Dose Space of the
Original Experiment

Dashed Line: Additivity Model, Solid Line: Hypothesized Mbxure Model
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Figure 4.6. The Penalized Optimal Second Stage Design for the Estimation of the

Interaction Threshold

The vertical dotted line in Figure 4.2B represents the location of the hypothesized

interaction threshold.
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4.6. Discussion

While Ds-optimal designs may satisfy statistical optimality criterion, there may be
practical issues associated with their implementation. The Ds-optimal second stage
design presented in Section 4.4 is a worthwhile example of these issues. The Ds-optimal
second stage design is a four point design which, in reality, can be described by two
design points. The allocation of the Ds-optimal second stage design is such that the
entire sample is divided between 104.5 and 105.5 pg/kg, the third and fourth design
points. The lack of a control group is likely to be a concern for the investigator.
Additionally, the close proximity of the third design point to the fourth is likely to be an
issue in the implementation of this design. The investigator may not be able to reliably
distinguish between these doses. If the implementation of the Ds-optimal design is a
problem because it conflicts with the design preferences of the investigator, then the
design preferences of the investigator can and should be taken into account when
determining the optimal design.

The penalized optimality criterion developed by Parker and Gennings (2006) uses
both an alphabetic optimality criterion and the design preferences specified by the
investigator to determine the optimal design. To apply this criterion in the example
presented in this chapter, we collaborated with toxicologist Dr. Kevin Crofton at the U.S.
EPA regarding design preferences for this scenario. We characterized these preferences,
described in Section 4.5.1, using the desirability functions presented in Table 4.2. The

overall desirability of the design, as well as the variance of the hypothesized interaction
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threshold, were taken into account in the search for the penalized optimal second stage
design.

Whereas the Ds- optimality criterion applied in Section 4.4 seeks to minimize the
variance of the hypothesized interaction threshold, the penalized optimality criterion
seeks to minimize both the variance of the hypothesized interaction threshold and the
penalty function associated with the design. The penalized optimal second stage design,
presented in Figure 4.6, clearly addresses the practical issues of the Ds-optimal design.
Approximately 15% of the sample is allocated to the control dose. The remaining three
design points are scattered around the hypothesized interaction threshold. Their
proximity to each other is controlled by the desirability functions, as is the number of
subjects per design point, the location of the design points, the percentage of the sample
below the interaction threshold, and the percentage of the design points below the
interaction threshold. Thus, the resulting penalized optimal design has the characteristics
deemed important in practice, as quantified by the desirability functions, while allowing

only a minimal increase in the variance of the interaction threshold.



Chapter 5
Determining Optimal Experimental Designs for Nonlinear Models Using

Likelihood Ratio-Based Inference

5.1 Introduction and Motivation

In some cases where nonlinear models are concerned, (quasi-) likelihood ratio-based
testing procedures may be preferred over Wald-type procedures. One reason for this
preference, O’Brien (2002) argued, is that the coverage properties of the (quasi-)
likelihood ratio-based confidence interval are more reasonable than the Wald-type
intervals. To demonstrate, O’Brien (2002) provided a number of simple examples where
Wald-type procedures proved inadequate. Wald-type procedures are based on the
asymptotic normality of the vector of model parameter estimates, which comes from a
linear Taylor-series approximation to the nonlinear functional form of the mean. If the
linear approximation is poor, inference based on this assumption of asymptotic normality
may be misleading (Seber and Wild, 2003). Whereas Wald-type procedures are based on
a linear approximation to the nonlinear function, (quasi-) likelithood ratio-based
procedures are based on the nonlinear function itself.

First-order, such as D- and Ds-, optimality criteria are also based on a linear

approximation to the nonlinear function (Seber and Wild, 2003). Locally D- optimal
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designs minimize the volume of the linearized confidence region for the unknown

parameters P (Seber and Wild, 2003; O’Brien, 1992). As a result, these criteria have

fundamental limitations if the linear approximation is poor. Quadratic design criteria,
based on a quadratic approximation to the nonlinear function, minimize the volume of the
second-order approximation to the confidence region (O’Brien, 1992). Both the first-
order and quadratic optimality criteria are based on approximations to the nonlinear
function. Recall, however, that (quasi-) likelihood ratio-based procedures do not involve
approximations to the nonlinear function; instead, the (quasi-) likelihood is a function of
the nonlinear function itself. If the planned analysis involves (quasi-) likelihood ratio-
based inference, then, it may be more appropriate to use a (quasi-) likelihood ratio-based
criterion to develop the design.

The primary obstacle to the development of a (quasi-) likelihood ratio-based
optimality criterion is that data are required in order to construct the interval. In order to
construct the (quasi-) likelihood ratio-based confidence interval for a potential design, the
response at each design point must be known. Minkin and Kundhal (1999) developed an
optimality criterion based on the width of the likelihood ratio-based confidence interval.
In particular, Minkin and Kundhal considered the situation in which logistic regression
was to be used to analyze binomial data, in order to obtain an estimate of the EDsy.
Minkin and Kundhal restricted their attention to a symmetric, two-point design and
addressed the need for data by replacing each unknown data point with its expected
value. By doing so, Minkin and Kundhal demonstrated that the optimal design can be

found numerically by solving a system of two equations.
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In the scenario of Minkin and Kundhal, the logistic model based on the hypothesized

parameter values predicted the proportion responding at a given dose. As a result, they
are not concerned with estimating the variability of the response. In the described
situation, the variability of the response at a given dose is a known function of the
corresponding mean. Replacing the unknown data points with their expected values,
then, seems reasonable. For continuous data, however, using the mean is representative
of the best case scenario and leads us to underestimate the variance of the response.

We are interested in developing a more general procedure for using the (quasi-)
likelihood ratio-based confidence interval as an optimality criterion. In particular, we
want to find the design that maximizes the lower bound of the (quasi-) likelihood ratio-
based confidence interval around a given parameter of interest. Let us consider the
situation in which we have dose-response data available; these data constitute the first
stage data. If these data do not permit an adequate answer to the question of interest, we
may want to supplement the first stage data with additional design points, which we refer
to as the second stage design.

The goal of this chapter is to propose a procedure for using a (quasi-) likelihood
ratio-based confidence interval as an optimality criterion in the development of an
optimal second stage design. In Section 5.2, we describe our method for constructing the
quasi-likelihood ratio-based optimality criterion. The method and resulting designs will
be illustrated using a nonlinear threshold model for single agent dose-response data. The
analysis of the first stage data is presented in Section 5.3. In Section 5.4, we demonstrate

the method and resulting second stage design and compare the resulting quasi-likelihood
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ratio-based optimal second stage design to the corresponding D- and Ds- optimal second
stage designs. Lastly, we demonstrate and compare the designs under a different set of
hypothesized parameter values in Section 5.5, and we conclude the chapter by discussing

overall design implications.

5.2 Methods
To take into account the variability inherent in dose-response data where the
response of interest is a continuous variable, we propose a bootstrap resampling

procedure, which makes use of information available from the first stage data to predict

responses for a given second stage design. Let y, represent the k™ response observed at
the /" dose in the s™ stage of the experiment, for s=1,2, j=1,...,m,, and k = L...,n;.

Here m; represents the number of treatment levels in the st stage of the experiment, and

n,; represents the number of observations taken at the /" treatment level of the s stage.

The total sample size for the s™ stage is n, = Zn
j=1

where n, is fixed prior to beginning

52
the design search.

Let x,; represent the dose associated with the ;™ treatment level of the s™ stage. Let
B represent the px1 vector of regression parameters, such that
E{yy}=p,(B)=f(x,.B) and Var {Vye} =7V (1,(B)), where f(e) is the nonlinear
functional form of the mean response. As described in Section 2.2.3, numeric methods

are used to find the maximum (quasi-) likelihood estimate |§ , and the moment estimate is
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used to estimate 7. The properties of the quasi-likelihood ratio-test were described in
detail in Section 2.2.4. Here we provide a general discussion of the procedure for finding
the maximum quasi-likelihood ratio-based lower bound around parameter of interest &,
where n represents the number of observations available for analysis. This procedure will
be used numerous times during the design search. Prior to beginning the search, the

parameter estimates and quasi-likelihood ratio-based lower bound are found using only
the first stage data, so that » =n,. During the design search, the parameter estimates and
quasi-likelihood ratio-based lower bound are found using information from both the first
and second stages, so that n=n, +n,.

Based on the available data, let Q,, be the quasi-likelihood achieved under the full

model, and let O, be the quasi-likelihood achieved under the reduced model. As

before, M is the difference in the degrees of freedom between the full and reduced

models. Recall that the quasi-likelihood ratio test statistic is statistically significant for

_2{Qred _qull} S F .1)

A = Mn-pl-a-
M P

Consider p=[¢ 6], where 8 represents the (p—1)x1 vector of model parameters,

excluding the parameter of interest § . Let ® and f represent the maximum quasi-

likelihood estimate of O and &, respectively, found by maximizing the quasi-likelihood

with respect to all model parameters simultaneously. Let @ represent the maximum

quasi-likelihood estimate of @ associated with a fixed value of the parameter of interest,
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&,. The quasi-likelihood ratio-based confidence interval around & is given by all &

such that
_2 {Qred({o ,(:)) B Qf“”(fié) }
TA < F;,n—p,l—a ’

since M=1. Equivalently, the quasi-likelihood ratio-based confidence interval is given by

all £, such that

1.
{Qred(go,é) >Q A 8) " TFppioa } ' (5.2)

This indicates that any ¢, for which the associated quasi-likelihood is larger than the

comparison value, given by the right-hand side of equation (5.2), is included in the

confidence interval around & . Then the quasi-likelihood ratio-based lower bound, ¢, is

defined as
Rk - i, 53
6= néina Qred(go,é) _quu(g',é) _57 Ln-pl-a (5.3)

The objective is to maximize the lower bound of this confidence interval, £, , which is
our optimality criterion.

Consider a second stage design of n, observations taken at m,design points,
represented by x,;, with the proportion of observations taken at the ;™ second stage

design point represented by ¢,;. Then n,; =n,q,; represents the sample size allocated
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to the /™ second stage design point. For nonlinear models, optimality criteria depend not
only on the location of the design points x,,,...,x,, , but also on the unknown parameters
B. The goal of this method is to select x,;and g,; in order to maximize &, which is

found according to equation (5.3) .
Based on hypothesized parameter values, the mean can be predicted at each potential
design point. In this regard, the analysis of the first stage data plays an important role in

designing the second stage experiment. Let the estimates of B and 7 resulting from the

analysis of the first stage data define the hypothesized model. Based on these parameter

estimates, we can compute the predicted mean for each design point in the first stage
experiment, / (ﬁ) =f (x1 j,ﬁ) , as well as the standardized residual, e, ;, , associated with
each observation. In the quasi-likelihood case, where it is assumed that
Var ( ysjk) =tV ( M, (B)) , the standardized residual of the £™ observation on the /™ dose of

the first stage is defined as

7 (4 ()

The observed standardized residuals provide important information regarding the

(5.4)

el Jk

variability of the first stage observations about the mean response.
We can randomly sample from the observed standardized residuals to create a

bootstrap sample of size n,, and this bootstrap sample can be used to predict the response

associated with each second stage observation as follows. Let the prediction for the k™
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observation on the jth design point in the second stage experiment be represented by 3, ,
for k=1,...,n,,. The predicted mean for the j™ design point, X518 fby (fi) = f(xzj,fi).

We generate n, random samples of size one from the standardized residuals, with
replacement, such that the predicted standardized residual associated with response ¥, ;

is &,,. Solving equation (5.4) for y, we see that the predicted response for the K

observation on the /™ design point is

.)~’2jk =ézjk\/fV(/sz (ﬁ)) +[l2j (ﬁ)’ (5.5)

a function of the /™ dose level, its predicted mean and its predicted standardized residual.

Using this technique to predict responses for a given second stage design, each
bootstrap sample drawn will result in a different estimate of the lower bound. We can
obtain an empirical distribution for the lower bound of the confidence interval by
drawing a large number, B, of bootstrap samples. We considered the median of the
bootstrap distribution to represent the location of the lower bound, although other
measures of central tendency may also be considered. For a given second stage design,
the median of the bootstrap distribution of the lower bound is constructed using all
available data, according to the following procedure.

Bootstrap Algorithm

1. Select a bootstrap sample of size n, from the standardized residuals.

2. Predict responses for the second stage design using equation (5.5). The complete

design is represented by the (n, +n,)x1 vector
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X =[x11 Xip oo Xpp Xy Xy e x2m2:|' ,
where x,; is the n,; x1vector representing the j™ dose, x, j»and x,; isthe n,; x1
vector representing the jth design point, x,;. The corresponding response vector
is

y :|:yn Y2 o Yim Yu Vu oo S’zmzjl"
where y, ;is the n,; x1vector of responses observed at the ;™ dose of the first stage

experiment, and §,; is the n,; x1vector of predicted responses for the ™ design

point in the second stage experiment.

3. Using the Nelder-Mead Simplex Algorithm, determine the maximum likelihood
estimate, fi, of the vector of model parameters P, using the complete design and
response vectors defined in step (2) .

4. Find the lower bound of the confidence interval, &, , according to equation (5.3),
using the complete design and response vectors defined in step (2).

5. Repeat steps (1) through (4) a total of B times, noting the lower bound ¢, .

6. The location of the lower bound is represented by the median of the B
lower bounds, ,,,, ¢,

Use of the median of the bootstrap distribution of the lower bound as the objective
function stabilizes the design search; however, there is still a fair amount of variability in

the median. Because of this variability, the design search is not a simple numerical

optimization problem.



142

The design search requires use of a direct search algorithm; we chose to use the
Nelder-Mead Simplex Algorithm. This procedure involves two optimization problems —
the maximization of the median of the bootstrap distribution of the lower bound and the
maximization of the quasi-likelihood, which is used to find the maximum quasi-
likelihood estimate of the vector of model parameters. As a result, nested Nelder-Mead
Simplex Algorithms are used to find the optimal second stage design based on the quasi-
likelihood ratio-based confidence interval. Because this algorithm can be somewhat
dependent on starting values, a grid search of dose locations is used to find the optimal
second stage design. The candidate optimal design is the design that maximizes the
median of the bootstrap distribution for a particular starting design. For each potential
starting design, the objective is to find the location and corresponding allocation that
maximize the median. The design that maximizes the median of the bootstrap
distribution of the lower bound across all candidate optimal designs is the optimal design.
The procedure for finding the optimal design is defined as follows.

Design Algorithm

1. Based on the first stage data, use the Nelder-Mead Simplex Algorithm to
determine the maximum likelihood estimate, fi , of the vector of model
parameters p .

2. Construct the quasi-likelihood ratio-based confidence interval around &

associated with the first stage data, according to equation (5.2).
3. Calculate the standardized residual associated with each of the first stage

observations, according to equation (5.4).
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4. Using the Nelder-Mead Simplex Algorithm, find the second stage design that

maximizes the median of the bootstrap distribution of the lower bound, which is
found according to the bootstrap algorithm described previously.

5. Record the candidate optimal design and the median ,,, &, .

6. Repeat steps (4) and (5) for each potential starting design in the grid search.
7. Compare the medians across candidate optimal designs. The optimal
design is the candidate optimal design that is associated with the maximum of the
median of the bootstrap distribution.
The SAS/IML code used to run this procedure is given in Appendix D.

In the Simplex Algorithm, the default stopping rule associated with the convergence
of the response is 107, this means that the algorithm will stop when, for a candidate
simplex, the maximum response is no more than 10°% larger than the minimum
response. This stopping rule is appropriate when the objective function is a constant
function of the design. Consider, for instance, the Ds- optimality criterion, which uses
the variance of the dose threshold as the objective function. The variance of the threshold
associated with a particular design is the same each time the algorithm encounters that
design; therefore, it is reasonable to require that the change in the objective function be
sufficiently small to convince the user that the algorithm has converged to its minimum.

This stopping rule is too strict, however, when the objective function is a variable
function of the design. Consider the lower bound of the (quasi-) likelihood ratio-based

confidence interval around parameter of interest ¢ as an optimality criterion. The

objective is to maximize the lower bound. This situation is complicated because the
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value of the lower bound varies as a result of the bootstrap resampling procedure used to

find it. As a result, the lower bound associated with a particular design, ¢, will not

necessarily be the same each time the algorithm encounters that design. Using the

median of the bootstrap distribution of the lower bound, ,,. &, , smoothes the search,

because the median represents the location of the lower bound for a given design.
However, there is still variability in the median for a given design. As a result, it is
necessary to adjust the stopping rule associated with the Nelder-Mead Simplex

Algorithm. To this end, a study of the distribution of ,,, &, for a number of candidate

designs may be helpful.

The default stopping rule associated with the convergence of the design is also 107
This means that the algorithm will stop when, for a candidate simplex, the maximum
value of a design parameter is no more than 10°% larger than the minimum value of that
parameter. Changes in the design parameters that occur beyond the third decimal place
do not appreciably change the design. As a result of the variability in the median of the
bootstrap distribution, however, the same design will result in a different value of the
objective function. Therefore, this stopping rule is too strict as well.

In the following section, we present a dose-response analysis of the deltamethrin data
described in Wolansky, Gennings and Crofton (2005). This analysis provides motivation
for the method that we have proposed. In addition, we demonstrate the method using the
deltamethrin data and present the second stage design resulting from the use of the quasi-

likelihood ratio-based lower confidence bound as an optimality criterion.
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5.3 Example: Analysis of Dose-Response Data for Deltamethrin

Deltamethrin, a pyrethroid, is a pesticide that acts primarily on the nervous system
(Wolansky, Gennings and Crofton, 2005). Wolansky, Gennings and Crofton (2005)
conducted a study to assess the individual dose response functions for deltamethrin and
other pyrethroids. Each of the 55 rats included in the experiment was randomly allocated
to one of seven deltamethrin dose groups. The response of interest was motor activity,
recorded as a percentage of the control response. The observed dose-response

relationship is given in Figure 5.1.
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Figure 5.1. Motor Activity vs. Administered Dose of Deltamethrin
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The data were analyzed using a nonlinear exponential threshold model of the form

a+y, x<o6
a+7exp{ﬂ(x—5)}, x>8
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The response variable is a percentage of the response at the control dose. An hormetic
effect could be considered to model mean responses larger than 100. Using the threshold
model, however, it is theoretically reasonable to restrict the mean response to percentages
no larger than 100. The response does not appear to reach a minimum at 0, but at some
higher percentage of the control response. Therefore, we allowed the minimum response
to be estimated by the data, rather than forcing a fixed minimum response. We fit the

model

100, x<6
'uz{a+(100—a)exp{,8(x—5)}, x>0 (56)
to the deltamethrin data pictured in Figure 5.1.

In this example, let p= [5 a B ] be the vector of model parameters. We are
particularly interested in determining whether a threshold exists for this agent. Quasi-

likelihood methods were used to find the maximum quasi-likelihood estimate of P, ﬁ

The resulting parameter estimates are given in Table 5.1, and the resulting parameter fit is
shown in Figure 5.2.

Table 5.1. Parameter Estimates Resulting from the Fit of the Model

Approximate 95% Wald-type

Parameter Estimate Confidence Interval
o 24.99 (-12.3,62.2)
B -0.22 (-0.55, 0.10)
S 0.89 (-0.24, 2.0)
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Figure 5.2. The Fit of the Exponential Threshold Model to the Deltamethrin Data
It can be seen from the plot that the model adequately represents the observed dose-

response relationship. The existence of a dose threshold appears to be reasonable. The

parameter estimates, however, lead to a different conclusion. As the threshold is of

primary concern, consider p = [5 0]. Then the quasi-likelihood ratio-based confidence

interval can be found according to equation (5.2), where {=6. The estimate of the

threshold is 0.89 mg/kg; the approximate 95% quasi-likelihood ratio-based confidence
interval around the threshold is [-1.37, 3). The corresponding Wald-type confidence
interval differs markedly, though both intervals lead us to conclude that the threshold is
not statistically significant. The resulting estimate of the slope is -0.22, while the
resulting estimate of the minimum response parameter is 24.99. According to our
parameter estimates, the minimum response of approximately 25% will be reached at a

dose larger than 30 mg/kg. The largest dose for which we have data available, however,
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is 10 mg/kg. In other words, lack of data support in the region of minimum response is
an obstacle to the precise estimation of these model parameters.

This problem with parameter estimation can be evidenced in our search of potential
threshold values to include in the quasi-likelihood ratio-based confidence interval. To
search for the approximate location of the confidence interval, we estimated the

remaining parameters while holding the threshold fixed at &,. The resulting quasi-
likelihood value was plotted against its corresponding threshold value, which is given in
Figure 5.3. This plot is a graphical technique for finding threshold values, ¢, for which
equation (5.2) is satisfied. The solid line represents the confidence interval cutoff, as
defined by the right side of equation (5.2). Any potential threshold value, ¢, that has its

corresponding quasi-likelihood above the solid line is included in the confidence interval

around the threshold.
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Figure 5.3. Quasi-likelihood Associated with a Fixed Value of the Threshold
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As can be seen in Figure 5.3, the quasi-likelihoods associated with potential
threshold values up to, but not including, three, are approximately equal. In fact, these
quasi-likelihoods are equivalent to the third decimal place. Recall that the maximum
quasi-likelihood estimate of the threshold is 0.89 mg/kg, which corresponds to a quasi-
likelihood value of 16002.934; however, the above plot indicates that larger thresholds
are approximately just as likely (the associated decrease in the quasi-likelihood is only
0.13). Again, this uncertainty in the estimate of the threshold likely stems from the fact
that there is insufficient data support for the estimation of the minimum response.

Fixing the minimum response at 25%, which is the maximum quasi-likelihood
estimate of the minimum response, the lower confidence bound on the dose threshold
increases from -1.34 to -0.88 mg/kg. This increase is a demonstration of the impact that
insufficient data support has on parameter estimation. In addition, further demonstration
of the impact of insufficient data support is provided in Figure 5.4, where we give the
plot of the quasi-likelihood associated with potential threshold values when the minimum
response is held fixed. Again, this plot is a graphical technique for finding threshold
values, ¢, for which equation (5.2) is satisfied. The behavior of the quasi-likelihood in
Figure 5.4 is certainly more typical than in Figure 5.3; the quasi-likelihood is largest for

the maximum quasi-likelihood estimate of the dose threshold and decreases steadily as

the potential threshold values increase.
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In order to more precisely estimate the dose threshold, we are interested in using
statistical optimality criteria to design a second stage experiment. The first stage data
will remain unchanged; we will use the Nelder-Mead Simplex Algorithm to determine
the location and allocation of the second stage sample that maximizes the median of the
bootstrap distribution the lower bound of the quasi-likelihood ratio-based confidence
interval around the dose threshold. We present this design in Section 5.4 and compare it
to the D- and Ds- optimal designs. In Section 5.5, we investigate the change in these

designs that results from a change in the hypothesized model.
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5.4 Comparison of the Second Stage Designs Associated with the D-, Ds- and Quasi-

Likelihood Ratio-Based Lower Confidence Bound Optimality Criteria

We set the stopping rule associated with the convergence of the design at 107%; this
means that the algorithm will stop when, for a candidate simplex, the maximum value of
a designparameter is no more than 1% larger than the minimum value of that parameter.
This stopping rule is meant to ensure that, if the changes in the design parameters are
such that the design is not appreciably altered, the algorithm will recognize that the
design has converged.

Recall that each bootstrap sample results in a different set of predicted responses, and
each set of predicted responses results in a different estimate of the lower confidence

bound around the dose threshold, £, . As a result, the objective function is the median of

the bootstrap distribution of the lower bound. To study the empirical distribution of the
median, we considered each of three candidate designs. For each candidate design, we
simulated 1000 bootstrap distributions of the lower bound and recorded the median of
each bootstrap distribution, which is defined as the median lower bound resulting from
100 randomly selected bootstrap samples. This study provided insight regarding the
variability associated with the median, which was taken into consideration when setting
the stopping rule associated with convergence of the response.

The empirical distribution of the median lower bound indicated that the magnitude of
the first and third quartiles represents, on average, a 20% shift from the median of the
median lower bounds. This means that we might expect that, for a candidate design, at

least 50% of bootstrap distributions will result in a median lower bound that falls within



152

20% of the median of the median lower bounds. Due to chance, the median of the
bootstrap distribution of the lower bound may vary from the median of the median lower
bounds by as much as 20% in either direction. Therefore, we set the stopping rule
associated with the convergence of the response at 0.2; the algorithm will stop when, for
a candidate simplex, the maximum response is no more than 20% larger than the
minimum response.

Because the results of Nelder-Mead can be somewhat dependent on starting values,
we conducted a search over 27 sets of starting values. The second stage design consists

of n, =100 subjects. We required that the resulting design contain a control dose; that is,

the first design point is always the control, though the proportion of the second stage
sample allocated to the control dose is allowed to iterate within the search algorithm.

The second stage design resulting from the use of the quasi-likelihood ratio-based
lower bound on the dose threshold as an optimality criterion is presented in Table 5.2.
For comparison purposes, the D- and Ds- optimal second stage designs are also given in
the table. In our notation, d represents the second stage vector of dose locations, and the
vector q represents the proportion of the second stage sample allocated to each dose.

Table 5.2. Optimal Second Stage Designs for the Estimation of the Dose Threshold

d
Criterion Second Stage Design: { }
q

I 0 10 69 203
Quasi-likelihood Ratio-base 12 45 32 12

, 0 09 67 376
D- optimal {<.001 29 .24 .47}
_ 0 891 890 .890
Ds- optimal {005 41 36 .24}
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The quasi-likelihood ratio-based second stage design allocates 12% of the second
stage sample to the control group. Approximately 45% of the sample is allocated to the
second design point, located just above the hypothesized dose threshold. The remaining
design points are placed so as to capture information regarding the slope and the
minimum response. These design characteristics are similar to those seen in the D-
optimal design. Both designs place the second design point just above the hypothesized
dose threshold and place remaining design points to improve the estimation of the slope
and minimum response parameters. The Ds- optimal second stage design, however,
places design points only in the vicinity of the hypothesized dose threshold. In Figure
5.4, we compare the location of the second stage design points, with regard to the
hypothesized model and the first stage data, for the quasi-likelihood ratio-based design to

the D- optimal design.

A. The Quasi-Likelihood Ratio-based | B. The D- Optimal Second Stage Design
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Figure 5.5. The Second Stage Designs for the Estimation of the Dose Threshold

A visual comparison of the design plots in Figure 5.5 makes evident the similarities

in the quasi-likelihood ratio-based design and the D- optimal design. The primary
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distinction is the location of the largest dose group. The quasi-likelihood ratio-based
design places the largest dose group at 20 mg/kg, which is approximately one-half the
dose associated with the largest dose group in the D- optimal design. It is important to
keep in mind, however, that the D- optimal design is based on the generalized inverse of
the parameter covariance matrix, while the quasi-likelihood ratio-based design uses the
median of the bootstrap distribution of the lower bound on the dose threshold as the
optimality criterion.

Since the preferred method of analysis is quasi-likelihood ratio-based inference, we
are interested in the performance of the quasi-likelihood ratio-based confidence interval
associated with these designs. To investigate, we created 1000 bootstrap samples of the
standardized residuals. Each of the bootstrap samples was used to predict responses for
the quasi-likelihood ratio-based design, and the lower confidence bound on the dose

threshold, &, , was recorded for each bootstrap sample. The process was repeated for

both the D- and the Ds- optimal designs. We compared the distribution of lower bounds

by creating side-by-side boxplots and histograms, which are presented in Figure 5.6.
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A. Side-by-Side Boxplots Comparing the
Distribution of the Lower Bound on the
Dose Threshold for the Quasi-likelihood
Ratio-based Design to the D- and Ds-

B. Side-by-Side Histograms Comparing
the Distribution of the Lower Bound on the
Dose Threshold for the Quasi-likelihood
Ratio-based Design to the D- Optimal
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Figure 5.6. The Distribution of Lower Confidence Bounds on the Dose Threshold by
Optimality Criterion.

The D- optimal design results in a median quasi-likelihood ratio-based lower
confidence bound on the dose threshold of 0.04 mg/kg, whereas the quasi-likelihood
ratio-based design results in a median of 0.14 mg/kg. In Figure 5.6A, it is evident that
the median lower bound associated with the quasi-likelihood ratio-based design is higher
than the median associated with the D- optimal design. The variability in the
distributions, however, appears similar, as indicated by a visual comparison of the box
width associated with these two designs. Based on this plot, one might think that the
distribution resulting from the quasi-likelihood ratio-based design is simply a location
shift of the distribution resulting from the D- optimal design. In Figure 5.6B, however, it
is evident that the distributions are remarkably similar in location; instead, it appears that

the tails of the distribution are heavier for the D- optimal design than for the quasi-

likelihood ratio-based design, which results in a lower median for the D- optimal design.
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Recall that insufficient data support in the region of minimum response is an obstacle
to the estimation of the deltamethrin model parameters. To assess the resulting impact on
the design, we found the quasi-likelihood ratio-based design where the minimum
response is fixed at 25%, the maximum quasi-likelihood estimate of the minimum
response. The resulting design includes a control group, which receives 3% of the
sample. The design also includes dose groups at 1.3, 10.6 and 12.0 mg/kg with
proportions 0.38, 0.31, and 0.28 respectively. This is a slight change from the quasi-
likelihood ratio-based design given in Table 5.2, which is based on the estimation of the
minimum response parameter, though it exhibits similar characteristics. In either case,
the second stage design requires data just beyond the hypothesized dose threshold; the
remaining design points are placed so as to obtain information regarding the other model
parameters. In the case where the minimum response parameter is fixed rather than
estimated, it is not necessary to have data support in the dose region of the minimum
response. Instead, the design places two dose groups in the active region of the dose-

response curve to support the estimation of the slope parameter.

5.5 Comparison of the Second Stage Designs Associated with the D-, Ds- and Quasi-
Likelihood Ratio-Based Lower Confidence Bound Optimality Criteria under an
Alternate Set of Hypothesized Parameter Values
Recall that Figure 5.3 is a plot of the quasi-likelihood achieved versus the

corresponding value of the dose threshold. In terms of the quasi-likelihood, threshold

values up to, but not including, 3 mg/kg are approximately as likely as the maximum
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quasi-likelihood estimate, 0.89 mg/kg. This uncertainty in our estimate of the dose
threshold may be the result of insufficient data support in the region of minimum
response. In Figure 5.2, which demonstrates the fit of the model to the deltamethrin data,
it can be seen that only two groups received doses larger than 2 mg/kg. With so few
observations in the active region of the dose-response curve, it is difficult to estimate the
manner in which the response changes beyond the dose threshold. This uncertainty is
also problematic in terms of determining the optimal second stage design, since the
design will depend on the hypothesized model.

Based on the minimal decrease in the quasi-likelihood described in Section 5.3 and
shown in Figure 5.3, a dose threshold estimate of 1.8 mg/kg is approximately as likely as
the maximum quasi-likelihood estimate, 0.89 mg/kg. Therefore, we let the parameter
estimates corresponding to a fixed dose threshold of 1.8 mg/kg define an alternate
hypothesized model. In Figure 5.7, we demonstrate the fit of this alternative model with
regard to the first stage data; a visual assessment does not indicate problems with the fit
of the alternative model. Under this alternative model, we found the optimal quasi-
likelihood ratio-based second stage design, which we compared to the corresponding D-
and Ds- optimal second stage designs. The procedure and discussion are similar to that

described in Section 5.4.



158

~ 1507, o
1401
130%°
120
110 3

100gsm 8
°

1.
®
\d
®
.
90 Je»
)
>
0
:o
o

(% of Control

803
707
601
501 N

401 e

301 ]
207

Motor Activity

e Y
Deltamethrin (mg/kq)

Figure 5.7. The Fit of the Alternative Model to the Deltamethrin Data

We set the stopping rule associated with the convergence of the design at 107%; this
means that the algorithm will stop when, for a candidate simplex, the maximum value of
a design parameter is no more than 1% larger than the minimum value of that parameter.
We conducted a study of 1000 simulated bootstrap distributions and recorded the
corresponding estimates of the median lower bound to investigate the associated
variability. This study indicated that the magnitude of the first and third quartiles
represents, on average, a 5% shift from the median of the median lower bounds.
Therefore, we set the stopping rule associated with the convergence of the response at
0.05; this means that the algorithm will stop when, for a candidate simplex, the maximum
response is no more than 5% larger than the minimum response.

The second stage design resulting from the use of the quasi-likelihood ratio-based

lower bound on the dose threshold as an optimality criterion is presented in Table 5.3.
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For comparison purposes, the D- optimal and the Ds- optimal second stage designs are

also given in the table.

Table 5.3. Optimal Second Stage Designs for the Estimation of the Dose Threshold
Under the Alternative model

Criterion d
Second Stage Design: {q}
Quasi-likelihood Ratio-based 0 19 51 171
{.08 S50 .35 .07 }
D- Optimal 0 1.8 45 238
{.002 36 .36 .28 }
Ds- Optimal 0 1.61 1.80 1.81
{11 01 57 31 }

The quasi-likelihood ratio-based design allocated 8% of the second stage sample to
the control group. Approximately 50% of the sample is allocated to the second design
point, located just above the hypothesized dose threshold. The remaining design points
are placed so as to capture information regarding the slope and the minimum response.
These design characteristics are similar to those seen in the D- optimal design. Both
designs place the second design point just above the hypothesized dose threshold and
place remaining design points to improve the estimation of the slope and minimum
response parameters. The Ds- optimal second stage design, however, places design
points only in the vicinity of the hypothesized dose threshold. In Figure 5.8, we compare
the location of the second stage design points for the quasi-likelihood ratio-based design
to the D- optimal design, with regard to the alternative model and the data from the first

stage.




160

A. The Quasi-Likelihood Ratio-based | B. The D- Optimal Second Stage Design
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Figure 5.8. The Second Stage Designs for the Estimation of the Dose Threshold Under
the Alternative Model

A visual comparison of the design plots in Figure 5.8 makes evident the similarities
in the quasi-likelihood ratio-based design and the D- optimal design. As we saw in the
previous section, the primary distinction is the location of the largest dose group. The
quasi-likelihood ratio-based design places the largest dose group at 17 mg/kg; the largest
dose group in the D- optimal design is placed slightly higher, at 24 mg/kg. Under this
alternative model, the minimum response of 33% is predicted for doses larger than 16
mg/kg, a considerable shift from the previous model, which predicted a minimum
response for doses larger than 30mg/kg. This explains the effect of the hypothesized
model on the location of the last design point.

To investigate the performance of the quasi-likelihood ratio-based lower confidence
bound associated with these designs, we created 1000 bootstrap samples of responses

predicted by the alternative model and the appropriate design. We compared the
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distributions of the lower confidence bound by creating side-by-side boxplots and

histograms, which are presented in Figure 5.9.

A. Side-by-Side Boxplots Comparing the
Distribution of the Lower Bound on the
Dose Threshold for the Quasi-Likelihood
Ratio-based Design to the D- and Ds-
Optimal Designs.
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B. Side-by-Side Histograms Comparing
the Distribution of the Lower Bound on the
Dose Threshold for the Quasi-Likelihood
Ratio-based Design to the D- Optimal
Design.
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Figure 5.9. The Distribution of Lower Confidence Bounds on the Dose Threshold by

Optimality Criterion.

The D- optimal design results in a median quasi-likelihood ratio-based lower

confidence bound on the dose threshold of

ratio-based design results in a median of 1.33

1.31 mg/kg, whereas the quasi-likelihood

mg/kg. In Figure 5.9A, it appears that the

distribution of the lower bound for the D- optimal design is very similar to that of the

quasi-likelihood ratio-based design; in fact, the similarity in the distributions is confirmed

in Figure 5.9B.
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5.6 Discussion

For nonlinear models, Wald-type testing procedures are based on a linear
approximation to the mean. If the linear approximation is poor, Seber and Wild (2003)
state that the associated inference may be misleading. As a result, (quasi-) likelihood
ratio-based testing procedures, which are based on the nonlinear function itself, rather
than a linear approximation to the nonlinear function, may be preferred. Similarly, first-
order, such as D- and Ds-, optimality criteria are based on a linear approximation to the
nonlinear function; if the approximation is poor, designs based on these criteria may also
be misleading. Quadratic optimality criteria (O’Brien, 1992) are an improvement over
first-order criteria, since they are based on a quadratic approximation. If (quasi-)
likelihood ratio-based procedures are preferred, however, it is of interest to develop an
optimality criterion based on these procedures.

A major obstacle to the implementation of a (quasi-) likelihood ratio-based optimality
criterion is that data are required in order to construct the confidence interval. Minkin
and Kundhal (1999) developed an optimality criterion based on the width of the
likelihood ratio-based confidence interval. Minkin and Kundhal considered the situation
in which logistic regression was to be used to analyze binomial data, in order to obtain an
estimate of the EDsg. They restricted their attention to a symmetric, two-point design and
addressed the need for data by replacing each unknown data point with its expected
value. In this situation, where the response is the proportion responding, replacing the

unknown data points with their expected values seems reasonable. For analyses
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involving a continuous response, however, this solution is representative of the best-case
scenario.

We have developed a procedure, loosely based on the method of Minkin and Kundhal
described above, for using a (quasi-) likelihood ratio-based confidence interval to find the
optimal second stage design. In particular, we are interested in maximizing the lower
bound of the (quasi-) likelihood ratio-based confidence interval. We developed a
bootstrap resampling procedure for predicting responses at a given design point; the
resulting variability in the lower bound is reduced by using the median of the bootstrap
distribution of the lower bound as the objective function. We have demonstrated the
proposed method for improving the inference of the dose threshold in the single agent
deltamethrin.

In the preceding sections, we have described a number of difficulties associated with
the use of the quasi-likelihood ratio-based confidence interval as an optimality criterion.
Perhaps the primary difficulty is that, in order to construct the confidence interval, it is
necessary to have data at the candidate design points. The proposed method involves a
bootstrap resampling technique that allows us to predict responses at the candidate design
points. While this addresses the need for data, it brings about another set of obstacles.

The implementation of this method is computationally intensive. The method
involves the use of nested direct search algorithms, which are handled in the following
manner. The design search is conducted using the Nelder-Mead Simplex Algorithm; the
objective function is the median of the bootstrap distribution of the lower bound on the

dose threshold, which is based on 100 bootstrap samples. This means that, for each
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candidate design, the lower confidence bound must be constructed 100 times. Each
lower bound is found using another Nelder-Mead Simplex Algorithm to estimate model
parameters. For large samples, complicated models, or data sets with insufficient
support, significant computational time may be required to find the median of the
bootstrap distribution of the lower bound for a given design. In this case, completion of
the design search may be impractical, or even unfeasible.

The choice of stopping rules for the Nelder-Mead Simplex Algorithm handling the
design search is somewhat subjective. We based the stopping rule associated with the
convergence of the response on our study of the distribution of the median of the
bootstrap distribution. Care should be taken when setting this value. If the stopping rule
is set too high, then the design search will terminate without providing sufficient
evidence that the response has reached its approximate maximum. If the stopping rule is
set too low, the design search will continue even though the response has reached its
approximate maximum.

We have demonstrated that the characteristics of the quasi-likelihood ratio-based
second stage design are similar to those of the D- optimal second stage design. Both
designs place the first dose just above the hypothesized dose threshold. The remaining
design points are placed so as to improve estimation of the slope and minimum response
parameters. The last design point is placed at a dose large enough to validate the
hypothesized minimum response parameter; the remaining dose is placed in the active

region of the dose-response relationship to improve estimation of the slope parameter.
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Perhaps more importantly, we have shown that the distributions of the quasi-
likelihood ratio-based lower bound associated with these designs are similar. As such,
the D- optimal design is adequately suited for analysis by quasi-likelihood ratio-based
inference methods. Considering the complexities of the implementation of the quasi-
likelihood ratio-based confidence interval as an optimality criterion, it appears that the
resources required to determine the quasi-likelihood ratio-based design outweigh the

benefits of using the quasi-likelihood ratio-based design over the D- optimal design.



Chapter 6

Summary and Extensions

6.1 Summary

The implementation of a full factorial design, which is traditionally used to study
chemical mixtures, can be very costly in terms of time and resources when the mixture of
interest is complex. As a result, focus has been shifted toward the implementation of
more efficient experimental designs that are still capable of showing interaction among
the chemicals in a complex mixture. In addition, because the number of potential
mixtures for study is astronomical, it has been suggested that research should focus on
relevant mixtures, mixtures in which the components and relative proportions reflect
those encountered in the environment (Teuschler et al., 2002). In these regards, the ray
design is an important development in the study of complex chemical mixtures. The
implementation of statistical optimality criteria when developing experimental designs
will also help the investigator to focus resources in areas that are most important for
achieving research objectives.

As a result of complicated biotransformation, elimination and/or repair processes,
many biological systems exhibit some level of tolerance to a toxic insult (Cox, 1987). As

such, it is often of interest to estimate the dose threshold, the boundary beyond which the

166



167

agent or mixture causes a change in response. In addition, there are numerous examples
of dose-dependent interaction in the peer-reviewed literature. For the purposes of risk
assessment, the U.S. EPA often assumes that additivity prevails in the low-dose region,
whereas departure from additivity may exist for large doses. This assumption implies the
presence of an interaction threshold, a boundary that separates the additivity region from
the interaction region. It is often of interest to estimate the interaction threshold using
toxicity data from the mixture of interest. The detection of these thresholds is an
important objective in mixtures research, since the dose-response relationship evident at
high doses may differ markedly from the low-dose relationship (Teuschler et al., 2002;
Teuschler and Hertzberg, 1995).

This dissertation is primarily focused on the development of statistical methodology
and experimental designs for the estimation of thresholds. In Chapter 2, we presented
methodology for simultaneously estimating a dose threshold and an interaction threshold
along a fixed-ratio ray. The novel model presented consists of three segments. Prior to
the dose threshold, there is no change from the background response; between the dose
threshold and the interaction threshold, the model describes an active region of additivity;
beyond the interaction threshold, the model allows for departure from additivity.
Inference associated with the dose and interaction thresholds model begins with a test of
additivity, or a test for interaction. If the test of additivity is significant, then we
conclude that there is interaction along the ray. It is then of interest to test for a region of
additivity. If the interaction threshold is significantly larger than the dose threshold, we

conclude that there is an active region of additivity along the ray, the location of which
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can be described using the confidence intervals around the threshold parameters. The
methodology was demonstrated for a mixture of nine HAAs along a fixed-ratio ray. In
addition, we presented optimal design work for the dose and interaction thresholds
model. The additivity region of the model receives a great deal of support from the
single chemical data; as a result, it was shown that the optimal design requires mixture
data only in the interaction region.

The objective of Chapter 3 was to review FSCR methodology and the analysis
presented by Gennings et al. (2006) of a mixture of 18 PHAHSs along a fixed-ratio ray.
This mixture serves as the motivating example for the design work presented in Chapter
4. The FSCR additivity and interaction threshold models are described in Chapter 3; the
statement of the additivity region in these models is implicit, which makes the parameter
covariance matrix difficult to construct. As a result, Gennings et al. used quasi-likelihood
ratio-based testing procedures in the analysis. In Chapter 4, we developed a method for
constructing the parameter covariance matrix of the FSCR models using implicit
differentiation. The methodology is demonstrated using the mixture of 18 PHAHs. We
used the parameter covariance matrix to find the optimal second stage design for
improving the estimation of the interaction threshold parameter. In addition, we
collaborated with Dr. Kevin Crofton, a toxicologist with the U.S. EPA and the scientist
who conducted the first stage experiment, to find the penalized optimal design (Parker
and Gennings, 2006).

The methodology presented in Chapters 2, 3, and 4 involved the use of nonlinear

models and, often, Wald-type testing procedures. —However, Wald-type testing
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procedures are based on a linear approximation to the nonlinear model; as a result,
(quasi-) likelihood ratio-based procedures may be preferred. In Chapter S, we developed
a procedure for constructing an optimal second stage design using the lower bound of the
(quasi-) likelihood ratio-based confidence interval as the optimality criterion. We
proposed a bootstrap resampling technique to predict responses for a given design point;
the objective function is the median of the bootstrap distribution of the lower confidence
bound on the model parameter of interest. The methodology is demonstrated using a
nonlinear threshold model for a single agent, where the parameter of interest is the dose
threshold. We compared the resulting quasi-likelihood ratio-based design to the usual D-
and Ds- optimal designs under two hypothesized models. It was found that the quasi-
likelihood ratio-based design and the D- optimal designs are similar, and the quasi-
likelihood ratio-based lower bound on the threshold behaves similarly for these designs

as well.

6.2 Extensions

In our design work, we considered only the situation in which the design for a given
stage is completely defined prior to beginning the corresponding experiment. For
instance, in Chapters 4 and 5, we considered only the situation in which the second stage
design is completely defined prior to beginning the second stage experiment.
Alternatively, we can consider the continual reassessment method (O’Quigley, Pepe and
Fisher, 1990; O’Quigley and Reiner, 1998). The continual reassessment method was

proposed for use in Phase I clinical trials and is aimed toward the estimation of the
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maximum tolerated dose; this sequential method uses response information available on

the first j—1 subjects entered into the study to determine the dose for the j™ subject

entered. In the risk assessment of chemical mixtures, the continual reassessment method
may be an efficient design for the estimation of the interaction threshold.

For the fixed design scenarios considered in this work, we considered D- and Ds-
optimality criteria, which are commonly seen in the literature. There are other alphabetic
optimality criteria that may also be useful. In addition, we may wish to consider
optimality criteria based on the variance associated with linear or nonlinear combinations
of model parameters, as in the additivity optimal design discussed in Chapter 2. For
nonlinear models, optimality criteria depend not only on the design but on the value of
the parameter vector. Since the value of the parameter vector is unknown, one may wish
to consider Bayesian techniques for determining the optimal experimental design
(Chaloner and Verdinelli, 1995).

Teuschler et al. (2002) encourage the development of methods for detecting
thresholds. According to the threshold model used throughout this dissertation, the dose
threshold divides the dose range into two regions — prior to the dose threshold, there is no
change from the background response; beyond the dose threshold, the response changes
as a possibly nonlinear function of the dose. However, Calabrese (2004) noted that the
past several years have shown considerable interest in hormesis, “a dose-response
phenomenon characterized by a low-dose stimulation and a high-dose inhibition.” If the
data indicate potential stimulation of the response in the low-dose region (ie, for growth

effects) or a potential reduction of the response in the low-dose region (ie, for toxicity
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effects), one might consider the implementation of a hormetic threshold model. It might
also be of interest to extend the dose and interaction thresholds model to allow for a
hormetic response in the low-dose region.

The U.S. EPA regularly assumes that the components of a mixture behave additively
in the low-dose region, and that interactions, if they exist, are strictly a high-dose
phenomenon. As a result, the interaction threshold is generally thought to separate a low-
dose region of additivity from a higher dose interaction region. Further, these models
allow for a single region of additivity and a single region of interaction, throughout which
the direction of the interaction remains constant. However, Gennings et al. (2002)
demonstrated a low-dose region of additivity, followed by alternating regions of
synergism, additivity and antagonism. Since the dose-dependent nature of interactions is
generally accepted, it may be of interest to develop a model with sufficient flexibility to
allow for multiple regions of additivity and interaction. The data requirements for the
support of such a complicated model demonstrate the usefulness of statistical optimality
criteria in developing experimental designs.

As we discussed in Chapter 3, the FSCR methodology is based on the adequate
modeling of the single agent dose-response data and allows the user to detect interaction
among the agents in the mixture. Gennings et al. (2004, 2006) developed and
demonstrated the additivity and interaction threshold models for continuous data.
However, certain histopathology and developmental endpoints may be measured as

ordinal responses. As a result, it may be of interest to extend the FSCR methodology to
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models, such as cumulative logit or proportional odds, that are capable of handling
ordinal responses and/or correlated cluster data.

The methods for detecting interaction described in this dissertation involve an
underlying assumption that the single agent dose-response relationships behave in the
same way; that is, it is assumed that the active single agent dose-response relationships
are either all increasing or all decreasing. In microarray studies, this is often not the case;
one agent may increase the expression of a particular gene, while another agent decreases
the expression of the same gene. Therefore, it is of interest to develop methodology
sufficiently flexible to handle single agents whose dose-response relationships reveal
conflicting directions. This necessitates a more basic definition of additivity than that
provided by Berenbaum’s interaction index. Methodology based on the fundamental
concept of an interaction, that the slope of a chemical’s dose-response curve changes in

the presence of another chemical, may be useful (Gennings et al., 2005).
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Appendix Al

Plots of Cell Viability versus Dose for each Single Chemical in the Chlorination Ray

Mixture
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Appendix A2

Plots of Predicted Cell Viability versus Dose for each Single Chemical in the
Chlorination Ray Mixture
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Derivatives Corresponding to the Hypothesis of Additivity
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Appendix A4

Derivatives Corresponding to the Construction of Confidence Intervals Around the
Threshold Parameters
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Parameter Estimates Resulting from the Fit of the Additivity Model to the Single

Chemical Data

Parameter Estimate | Standard Error | P-value
S (CA) -18.1725 0.7918 <0.0001
£> (DCA) -2.1601 0.0870 <0.0001
B3 (TCA) -5.1272 0.2328 <0.0001
LS4 (BA) -1486.5 55.0268 <0.0001
Bs (DBA) -29.1572 1.1154 <0.0001
Ss (TBA) -198.6 9.3174 <0.0001
[7(BDCA) | -19.7544 0.7696 <0.0001
Ps (DBCA) | -72.1209 3.5082 <0.0001
Lo (BCA) -18.0092 0.6873 <0.0001
Oudd -0.2633 0.0271 <0.0001
T 13.81
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Appendix A6

SAS Optimal Design Macro

%macro design (theta mix=,theta mix2=,cptl delta=,points=,start vals=,bign=,method=);

ize determinant of enti covariance matrix.

determinant of inte ion-subset of covariance matriz.

e determinant of covariance matrix for nonlinear hypothesis of additivity.*/

/* methods
m 4
method=3 ==> m

start initial;

/*Specify assumptions.*/

a={0.03, 0.30, 0.26, 0.06, 0.03, 0.02, 0.12, 0.04, 0.14};

beta={ -18.1725, -2.1601, -5.1272, -1486.5, -29.1572, -188.8§,
-19.7544, -72.1209, -18.0092};

dadd=-0.2633;

/*Estimate of betas and dadd come from the f£it of the additivity model to the single chemical data.*/

theta mix=&theta mix;

theta mix2=&theta mix2;

cptl delta=&cptl delta;

cptl delta new=cptl delta*1000;

tau=14; /*Estimate of ftau comes from the fit of the additivity model to the single chemical
data.*/

theta_add=a’ *beta;

dadd t=dadd/theta add;

print '*EFExssrdiAssumed Parameter Estimateg**xxxsxkxiig

print 'Slopes for the Individual Agents' beta;

print 'Dose Threshold ' dadd t;
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print 'Theta under Additivity ' theta add;
print 'Interaction Threshold ' cptl delta;
print 'Theta under Mixture ' theta mix;
print 'Theta under Mixture - quadratic term ' theta mix2;
t vals=j(&points,1);
g _vals=j(&points,1);
2do i=1 %to &points;

g&i=1/&points;

t&i=&start vals[1l,&i];

t vals(&i,1]=té&i;

g vals[&i,1]=qg&i;
%end;
flagl=0; flag2=0;
print 'TEEFAFFIAELAGEAYEing Values*rrrxdssixts
print 'Total Doses' t vals;
print 'Proporticn of Sample' g vals;
print 'Total Sample Size Assumed ' &bign;

/*Define fixed, single chemical data.*/

use temp;

read all var {xl x2 x3 x4 x5 x6 x7 x8 x9} into fixed x;
singlen=nrow(fixed x);

fixed xl=fixed x[,1]; fixed x2=fixed x[,2]; fixed x3=fixed x[,3];
fixed x4=fixed x[,4]; fixed x5=fixed x[,5]; fixed x6=fixed x[,6];
fixed x7=fixed x[,7]; fixed x8=fixed x[,8]; fixed x9=fixed x[,9];
fixed xbeta=fixed x*beta;

ivatives for fixed, single chemical data.*/
L definition.*/
add=exp (- (fixed xbeta-dadd));
muadd=100* (fixed xbeta>dadd)
+(200/ (1+add)) # (fixed xbeta<dadd);
/*Derivatives*/
dmuadd_dbeta1=(—200)#((l+add)##(—2))#add#(—fixed_xl)#( ),
dmuadd dbeta2=(-200)# ( (1+add) ## (-2)) #add# (-fixed x2)# (fixed xbeta<dadd);
dmuadd dbeta3=(-200)#((1+add)##(-2)) #add# (-fixed x3)# (fixed xbeta<dadd);
Y#(( YH#E(-2)) ( ) #( )
) #(( Y##(-2)) ( ) # ( )

fixed xbeta<dadd

’

dmuadd dbetad=(-200 l+add fadd# (-fixed x4 fixed xbeta<dadd
dmuadd dbeta5=(-200 l+add #add# (-fixed x5 fixed xbeta<dadd

—~ o~~~

4
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dmuadd dbeta6=(-200)# ( (1+add) ## (-2)) #add# (-fixed x6) # (fixed xbeta<dadd);
dmuadd dbeta7=(-200)#((1+add) ## (-2)) #add# (-fixed x7)# (fixed xbeta<dadd);
dmuadd dbeta8=(-200)# ((1+add) ##(-2)) #add# (-fixed x8)# (fixed xbeta<dadd);
dmuadd dbeta9=(-200)# ( (1+add) ## (-2)) #add# (-fixed x9)#(f1xed xbeta<dadd) ;
dmuadd_ddadd=(—200)#((1+add)##(— ))#add#(flxed_xbeta<dadd)

*Pixed subset of F matrix*/

fixed f=dmuadd dbetal || dmuadd dbeta2 || dmuadd dbeta3 ||
dmuadd dbetad4 || dmuadd dbeta5 || dmuadd dbeta6 ||
dmuadd dbeta?7 || dmuadd dbeta8 || dmuadd dbeta9d ||
dmuadd ddadd || j(singlen,1,0) || j(singlen,1,0) ||
j(singlen,1,0);
vmuadd=muadd+ ( (muadd##2)/(-119));
fixed v=diag(vmuadd);
/*Define derivatives for nonlinear hypothesis test of additivity.*/
lambda=7j(4,1,0);
lambda[l]=cptl delta;
lambda[2]=dadd t;
lambda [3]=theta mix;

lambda[4]=theta mix2;
dlambda_ dbeta=3j (4,13,0);

dlambda dbeta[1,13]=1/1000;

dlambda dbeta[2,1]=-dadd*a[1]/(theta add**2);

dlambda dbetal[2,2]=-dadd*a[2]/(theta add**2);
dlambda_dbeta[2,3]=—dadd*a[3]/(theta_add**Z);
dlambda_dbeta[Z,4]=—dadd*a[4]/(theta_add**2);
dlambda dbeta[2,5]=-dadd*a([5]/(theta add**2);
dlambda dbeta([2,6]=-dadd*a[6]/(theta add**2);
dlambda dbetal[Z2, 7]=-dadd*a[7]/(theta add**2);

dlambda_dbeta[2 8]=-dadd*a[8]/(theta add**2)

dlambda dbeta[2, 9]=-dadd*a [9]/ (theta add**2)

dlambda dbeta[2,10]=1/theta add;

dlambda dbeta[3,111=1;

dlambda dbetal[4,12]=1;
=3j(3,4,0); cl1,11=1; cl1,2]=-1; c[2,3]=1; c[3,4]=1;

’

’

finish initial;
run initial;
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start varcov;
3do i=1 %to &points;
n&i=round(&bign*qg&i) ;
$end;

/*Samplie Size constraints.>*/

sumn=0;

%let temp points=%eval (&points-1);

%do i=1 %to &temp points;
sumn=sumn+né&i;

¢end;

n&points=&bign-sumn;

/*Define Ts.*/
t=0;
3do i=1 %$to &points;
if n&i>0 then t=t// j(n&i,1,t&i);
%end; ; /*Initializes © to contain ni rows of ti
{in one statement concatination.*/

t=t[2:&bign+1l];

/*Define Xs based on Ts.*/

mixed x=t*a;

xl=mi§ed_x[,1]; x2=mixed x[,2]; x3=mixed x[,3]; x4=mixed x[,4];
x5=mixed x[,5]; x6=mixed x[,6]; x7=mixed x[,7]; x8=mixed x[,8];
x9=mixed x[,9];

xbeta=mixed x*beta;

/*Mcdel definition.*/
add_ term=exp (- (xbeta-dadd));
mix term=exp (- (xbeta-dadd)-theta mix# (t-cptl delta)
-theta mix2#((t-cptl delta) ##2));
mu=100* (t<(dadd/theta add))
+(200/ (1+add_term)) # ( (dadd/theta_add)<=t) # (t<cptl delta)
+(200/ (1+mix_term))# (t>=cptl delta);
/*Derivatives.*/
/*Bddivivity Derivatives.*/

dadd dbetal=add term# (-x1); dadd dbetaZ2=add termi (-x2);



dadd dbeta3=add term#
dadd dbetab= add term#
dadd dbeta7=add term#
dadd dbeta9=add _term#
dadd_ddadd add_term,

-x3
-x5
-x7

—~ e~~~

/*Mizture Derivatives.¥*/

dmix dbetal=mix term# (-x1); dmix dbeta2=mix_ term# (-

dmix_dbeta3=mix_term# (- x3), dmix dbetad=mix term# (-

dmix - _dbetab5=mix term#( 5); dmix dbeta6=mix term# (-

dmix dbeta7=mix term# (-x7); dmix dbeta8=mix termi# (-
)

dmlx dbeta9=mix term#( x9
dle ddadd=mix term;
dmix “dtheta mix=mix _term# (-t+cptl delta);

’

dmix " dtheta m1x2—m1x _term# (- (t##2)+2#t#cptl delta-(cptl delta##2));

dmix dcptl delta new=mix term#

((theta mlx/lOOO) + (2#t#theta mix2/1000) - (2#cptl _delta new#theta mix2/(1000##2)));
dmu_dbetal=(- 200)#((1+add_term)##( 2))#dadd dbetal# (dadd t<= t)#(t<cptl delta)
+ (-200)# ((1+mix term)## (-2)) #dmix dbetal# (t>=cptl _delta);

dmu_dbeta2=(—200)#((1+add term) ## (- 2))#dadd_dbeta2#(dadd_t< =t) # (t<cptl delta)
+ (-200)#((1+mix term)## (-2))#dmix dbetal# (t>=cptl _delta);

dmu_dbeta3=(—200)#((1+add term) ## (-2) ) #dadd _dbeta3# (dadd t<=t)#(t<cptl delta)
2))#dmix dbeta3# (t>=cptl delta);

#(-2))#dadd dbetad# (dadd t<=t)# (t<cptl_delta)

2) ) #dmix dbetad# (t>=cptl delta);

# (-2)) #dadd_dbeta5# (dadd_t<=t)# (t<cptl delta)

2))#dmix dbeta5# (t>=cptl delta);

#(-

2)

#(

+ (-200)# ((1+mix term) ## (-
dmu dbeta4=(-200)# ((1l+add term)#
+ (-200)# ((1+mix_term) ## (-
dmu_dbeta5=(-200) # ( (1+add_term) #
+ (-200)# ((l+mix term) ## (-
dmu_dbeta6=(-200) # ( (1+add term)#
+ (-200)#((1+mix_ term)## (-
dmu_dbeta7=(-200 #((1+add term) #
+ (-200)# ((1+mix_term) ## (-

+ (-200)#((1+mix term)##(-2)) #dmix dbeta8# (t>=cptl _delta);
((1+add_term) ## (-2) ) #dadd_dbeta9# (dadd_t<=t)# (t<cptl_delta)
1+mix term) ## (-2)) #dmix_dbeta9# (t>=cptl delta);

dmu_dbeta9=(-200
+ (-200) #(
dmu_ddadd=(—200)#((1+add_term)##( 2))

#dadd_ddadd# (dadd_t<=t) # (t<cptl delta)

+ (- 200)#((1+m1x term) ## (-2))

#dmix ddadd# (t>=cptl delta);

dadd dbetad4=add term# (-x4

)7 = )i
); dadd dbetaé6=add_term# (-x6);
); dadd dbeta8=add term# (-x8);
9);

2))#dadd dbeta6# (dadd t<=t)#(t<cptl_delta)
( ) #dmix dbeta6# (t>=cptl delta);
) 2))#dadd dbeta7#(dadd t<=t)# (t<cptl delta)
( ) #dmix dbeta7# (t>=cptl delta);
dmu_dbeta8=(-200) # ((1+add term)##( 2))#dadd dbeta8# (dadd t<=t)# (t<cptl_delta)
(
) #
(
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dmu dtheta mix=(-200)#((1+mix_term)##(-2))
#dmix dtheta mix#(
dmu dtheta mix2=(-200)#((1+mix term) ## (-2)
#dmix dtheta mix2# (t>=cptl delta);
dmu dcptl delta new=(-200)#((1+mix term)##(-2))
#$dmix dcptl delta new# (t>=cptl delta);
iterating f=(dmu dbetal || dmu dbeta2 || dmu dbeta3 || dmu dbeta4d ||
dmu dbeta5 || dmu dbeta6 || dmu dbeta7 || dmu dbeta8 ||
dmu dbeta% || dmu ddadd ||
dmu dtheta mix || dmu dtheta mix2 ||dmu dcptl delta new );
bigf=fixed f // iterating f;
vmu=mu+ ( (mu##2)/(-119));
iterating v=diag{(vmu);
bigv=block(fixed v,iterating v);
pl=10; p2=3; p=pl+p2;
inf=bigf *inv(bigv) *bigf;
varmat=tau*ginv (inf);
detvar=det (varmat) ;
sub=varmat[pl+l:p,pl+i:p];
detsub=det (sub) ;
finish varcov;

t>=cptl delta);
)
(

start var ts;
var lambda=dlambda_dbeta*varmat*dlambda_dbeta’;
var contrast=c*var lambda*c’;
detcontrast=det (var contrast);

finish var_ts;

$include simplex;
start function;
$do i=1 %to &temp points;
$let j=%eval (&i+1);
t&j=parms{&i];
g&i=parms[&points+ (&i-1)1];
$end;
nparms=2* (&points)-2;
sumg=0;



%do i=1 %to &temp points;
sumg=sumg + q&i;
%end;
g&points=1-sumqg;
test=0;
$do i=1 %to &points;
if (t&i<0) then test=test+l;
else if (t&i>0.1) then test=test+1;
if (g&i<0) then test=test+l;
else if (g&i>1) then test=test+1;
%end;
run varcov;
run var_ts;
if test>0 then do;
fn value=10**30;

flagl=1;
end;
else if detvar<=0 then do;
flag2=1;
fn value=10**30;
end;
else do;
if &method=1 then fn value=detvar;
else if &method=2 then fn value=detsub;
else if &method=3 then fn value=detcontrast;
end;

finish function;

start optima;
doses=t1
$do i=2 %$to &points;
//t&l
$end; ;
proportions=qgql
%do i=2 %to &points;
//q&i
%$end; ;
in parms=(doses[2:&points,1l] // proportions[1

:&temp points,1]);
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in steps=in parms#0.1;
run varcov; run var ts;
print ‘'initial evaliuation' varmat, detvar detsub detcontrast;

run simplex;
run varcov;
run var_ts;
prlnt '**********The Flnal Design********** ',-
print 'After ' count ' iterations:';
print 'Total Doses '
$do i=1 %$to &points;
t&i
$end; ;
print 'Proportion of Sample
3do i=1 %to &points;
g&i
$end; ;
print 'Sample Size'
$do i=1 %to &points;
n&i
%end; ;
print 'with ' fn value flagl flag2, detvar detsub detcontrast;
finish optima;
run optima;
$mend design;

1
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Appendix A7

Derivatives of the Mean with Respect to the Model Parameters for Use in the
Optimization of the Experimental Design

r=[*0)]
single chemical data (n,*13)

)

mixture data (n*13)

Let
. | ,
,U=100(t<§add t)+200 1+6Xp — Zﬂixi_é‘add (§add tSt{t<Mj
B P - 1000
-1
+200| 1+ expq— i,ﬁx -8, 1-0 (t— A"e‘”j -6 [t——A"ew Jz [t>—A”ewj
P P Tadd T 1000 =2 © 1000 71000
=100(¢ < 8,4y ,)+200[1+add _term]"(8,4, , < t{t < é——]
- - 1000
. . A
+ 200[1 + mix term]_ [t > —@_j
- 1000
where

add _term = exp{— [Zﬂixi - 6add]},
i=1
mix _term = €xXpq — Zc:ﬂx.—é'dd -0 t__A__nsw_ -6, t_Anew : '
- el ™\ 1000) "™\ 1000

Then the derivatives of the mean with respect to the model parameters are as follows.
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g_,u = 20001 _add _term)*(add _term)- x, )(t 2 5add_:)(f <4)

—200(1 + mix_term) *(mix _term)-x,)

aiﬂ = —200(1_add _term)_z(add _term)(+ 1)(t 2 5add_e)(t < A)

add

—200(1 +mix_term) *(mix_term)(+1)

OH = —200(1 + mixﬁz‘erm)"2 (mix_term)(— t+ Aﬂj

00, 1000
= —200(1 + mix_term)—2 (mix_term)(— t+ A)
2
O __ —200(1 + mix _term) *(mix_term) —1* + 2t—A"e“’ - —A”ewz
00,12 1000 1000

= —200(1 + mix _term)” (mix_term)(— £+ 2tA - Az)

oK __ —200(1 + mix term)—z(mix_term)( Onic_y 2000z _ ZQWZAZWJ
oA - 1000 1000 1000

new
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Appendix A8

Derivatives Corresponding to the Hypothesis of Additivity in the Reparameterized
Model




Appendix B
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Plots of T4 versus Dose for each Single Chemical in the Mixture
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199

1-PCDF 4—PCDF
14048 1607e
1304 150
1 d L]
1201 __ 140
FRRLE — 130
~-v100?: y Crge
— . o ~— 110 .
S 0% T Siod: o :
o 80,0 . o 3° *
: ) * 90, o -
704 o 3 3
be .. N : B 80-‘ N . d
~ 603 i o | T ol i
< 501 M o <~ 60" H . o
b 409 . L e 501 . .
30 o 407
207 . . : ; ' - . T : : 30% . . T . . T ; :
O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90
Dose(Hq/kq) Dose(#q/kq)
PCBI101 PCBI105
1804 160
170 150
1601 140
~~ 1507 —~130
- 1 o 120
© 1301 °
~ 120 ~ 110
1105, = 100"
o 100ge o 90
© 90R 3§ © 80
« 0K} L . 70
— 16 . ~ 690
604s H . 501%e
~ 5073 . . . ~+
~ 404 . . — 40
30 . ! HE I
20 ¢ o 20% ¢
104, —_— . — 10 e ey . e
0 10000 20000 30000 0 20000 40000 60000 80000 100000
Dose(#q/ka) Dose(#qg/kq)




200

PCB118 PCB126
140 130
1309, ¢ 120%
J
,\:?8 . 110
;wooi' . = 100
— ia ® — E
Z 90y Z 0%,
< 80pe [ [ BO‘.I
SORD . S 0w
(=) v ] (@] o’ ®
60 3 . 608, . .
= 50 : Z soda . i
40 R . !
= 3g . < 40 : . F
0 ! . : 30 .
10 : : 207 .
0% . . : T ' 1075 . . : . r y ) y ) !
0 2000 4000 6000 8000 10000 0 10 20 30 40 50 60 70 80 90 100
Dose{#q/kq) Dose(#q/kq)
PCBI138 PCBI153
140 130
1309 1204
/_\:?9-5. ~110%°
— v L] — 3
o 1ppNe 0100-:
= sode o 90RT .
= 803gy = 803 ° .
o . | A o L]
I 7()“x S 107, e
60 ] . 60" .
B 50 1 . B ] .
N ~ 50 []
401 . '
<+ 30 . [} . < 40 . []
[ b 3
201 3 : 301 N
109 (] 20 H
0 T . T ; ) 104 T T - v : !
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Dose{#q/kq) Dose(kg/kq)
PCBI156 PCB169
130 1404,
1201° 1304,
110 szo-[-
— 1008 — 1105, .
C o
R E L I © 100Kz
—~ 80‘{. — 90® o
[ g .
o 107, o 80% . .
© o60{° 3 © 70 * . o
ve 50 . l L] e 607 * :
=~ 40 H ~ 504 o
ot - .
<~ 30 . < 401 .
—_ — L
20 . L 30
10 L 20 J
0 : ! T : ; 10% . r ' T T ; ) : ; !
0 2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700 830 900 1000
Dose(#Mq/kg) Dosel(#q/kg)




201

PCB180 PCB28
140.0 160
L]
130% o 150
1207, 140
L]
= 110 . = 1304,
_ 10083 . — 1201
— 90 ; — T
=3 86‘ = 1103gs
:j 70_’: i (iIOGﬁ: * 1 ' *
L ] J
s F01 * : ] e 90 ‘. 1 N s
~— 5014 . . ~ 30‘. . . .
< 40 . < 708 ' .
- 30 604 H
20 H 501
16 e . , : — 404, SN - . e
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Dose(#q/kg) Dose(#q/kqg)
PCB52 PCB77
1301, 150
2 . 140
S 130
10 120
o R <110
LS A . 100
- L] L]
St Ll 5 9
) . o o 80
80 o s e 70
TS T 0 : . .
. 50 ]
Xoe0y, . o ; Y o .
; 30 H o
50 . : 20§ H :
40 . . . : ; 10— . T .
0 20000 40000 60000 80000 100000 0 10000 20000 30000
Dose(#q/kq) Dose(#q/kq)
PCDD TCDD
140
130
— 1207
= = 1107
N ~ 1001
= ' = 903
8 : 8 807 ' .
L]
" : . N 70%. :
~— . ~ 607ee . .
. L)
<« < 507 e :
— . — 40 Y
. . : . . .
] 30 .
. : : - . . : . . 207 : : T T T . . -
! 23 4 5 6 8 9 10 01 2 3 4 5 6 8 9 10

Dose(Ma/kq)

Dose{Mq/kq)




202

TCDF OCDF
1407, 140
130%
120 . 1304*
'''' 110% -
< <
SR I NEPTE
[ 90" o
..
S ao-&. . giwwo-§ . d
& ]0-: . 3 >
- 601° . \_/100@ s o
. . . » P
< 501 o ] < ] .
40 . . 9of ¢
30 . g L .
20 s . T : . R : : 80% . : #
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300
Dose(kq/kq) Dose(&q/kq)




Appendix B2

Parameter Estimates Resulting from the full FSCR model

Parameter | Estimate StdErr | pvalue | LowerCL | UpperCL
Q 58.2612 1.8390 | <0.0001 | 54.6534 | 61.8690
a, 45.4477 | 26.7469 | 0.0895 -7.0256 | 97.9210
a, 29.1118 4.3513 | <0.0001 | 20.5752 | 37.6484
a, 12.6959 1.3446 | <0.0001 | 10.0580 | 15.3338
a 14.8527 | 2.2491 | <0.0001 | 10.4403 | 19.2651
o, 47.3391 2.0981 | <0.0001 | 43.2230 | 51.4553
a, 15.7056 | 2.9150 | <0.0001 9.9868 | 21.4244
o, 18.4523 4.2413 | <0.0001 | 10.1315| 26.7730
a, 12.6602 3.6134 | 0.0005 5.5714 | 19.7491
a, 34.1507 6.1429 | <0.0001 | 22.0993 | 46.2022
Q, 42.1307 5.9563 | <0.0001 | 30.4454 | 53.8160
o, 68.1106 6.8620 | <0.0001 | 54.6484 | 81.5728
o, 51.3040 7.4068 | <0.0001 | 36.7729 | 65.8350
a, 29.3864 0.0987 | <0.0001 | 29.1928 | 29.5800
Qs 26.9772 | 13.3387 | 0.0433 0.8089 | 53.1456
a6 53.4973 0.0400 | <0.0001 | 53.4189 | 53.5758
a, 46.5578 | 0.00134 | <0.0001 | 46.5552 | 46.5604
a,. 42.6365 0.0279 | <0.0001 | 42.5818 | 42.6911
B, -0.0968 0.0353 | 0.0062 -0.1661 | -0.0276
5, -0.0232 0.0252 | 0.3577 -0.0726 0.0262
B, -0.00011 | 0.000028 | <0.0001 | -0.00016 | -0.00006
B, -0.00065 | 0.000099 | <0.0001 | -0.00084 | -0.00045
i -0.00071 | 0.000147 | <0.0001 | -0.00100 | -0.00042
B, -0.5719 0.2039 | 0.0051 -0.9719 | -0.1720
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Parameter | Estimate StdErr | pvalue | LowerCL | UpperCL
B, -0.00005 | 8.151E-6 | <0.0001 | -0.00007 | -0.00003
B -0.00004 | 7.736E-6 | <0.0001 | -0.00005 | -0.00002
B, -0.00046 | 0.000077 | <0.0001 | -0.00061 | -0.00031
B -0.00288 | 0.00115|0.0123 | -0.00513 | -0.00063
B, -0.00004 | 0.000018 | 0.0293 | -0.00007 | -3.93E-6
B, -0.00004 | 0.000034 | 0.2966 | -0.00010 | 0.000031
B -0.00003 | 0.000012 | 0.0199 | -0.00005 | -4.57E-6
i -0.00056 | 0.000104 | <0.0001 | -0.00077 | -0.00036
Bis -0.2204 | 0.1111 | 0.0474 -0.4384 | -0.00251
Bie -8.0362 | 3.8720 | 0.0381 | -15.6325 | -0.4398
B, -0.3030 | 0.1727 | 0.0795 -0.6418 0.0357

B -0.00088 | 0.000142 | <0.0001 | -0.00116 | -0.00060
S, 0.8573 1.3489 | 0.5252 -1.7890 3.5036
3, -1.6113 | 4.8317 | 0.7388 | -11.0904 7.8678
S, 41.2927 441.8 | 0.9256 -825.5 908.1
S, 262.8 103.8 | 0.0115 59.0520 466.5
S, 674.8 150.0 | <0.0001 380.6 969.0
S, -0.00249 |  0.2454 | 0.9919 -0.4840 0.4790
S, -1066.0 867.3 | 0.2192 -2767.4 635.4
S, -140.2 1350.3 | 0.9173 -2789.2 2508.8
S, -127.3 | 96.6988 | 0.1882 -317.0 | 62.3874
Sy 3.5751 | 35.0098 | 0.9187 | -65.1086 | 72.2589
S, 6936.9 | 3646.4 | 0.0573 -216.8 | 14090.5
S, 20424 | 9966.8 | 0.8377 | -17510.9 | 21595.7
S, -494.2 |  2457.4 | 0.8407 -5315.2 | 43269
8,4 -71.5264 | 98.4166 | 0.4675 -264.6 121.6
S, -0.5156 | 0.4838 | 0.2868 -1.4648 0.4336
O 0.00670 |  0.0270 | 0.8043 -0.0463 0.0597
o, 1.7817 | 0.8979 | 0.0474 0.0203 3.5432
S, 50.2372 | 80.8661 | 0.5346 -108.4 208.9

=
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Appendix B3

response parameters

Parameter Estimate StdErr | pvalue | LowerCL | UpperCL
& 2 on e | 515270 0.8855 | <0.0001 | 49.7898 | 53.2643
% o | 289070 | 2.0848 | <0.0001| 24.8171| 329970
@ 5., | 140382] 09949 |<0.0001| 12.0863 | 15.9901
@ | 426607 | 0.8201 | <0.0001 | 41.0519| 44.2695
B, 20.0809 | 0.0203 | <0.0001 | -0.1207 | -0.0411
5, 20.0352| 00115 |0.0023 | -0.0578 | -0.0126
B, 20.00011 | 0.000018 | <0.0001 | -0.00015 | -0.00008
5., 20.00067 | 0.000067 | <0.0001 | -0.00080 | -0.00053
B, 20.00066 | 0.000064 | <0.0001 | -0.00079 | -0.00054
5, 20.5593 | 04234 |0.1867 | -1.3899| 02713
A, 20.00005 | 5.248E-6 | <0.0001 | -0.00006 | -0.00004
A, 20.00003 | 3.633E-6 | <0.0001 | -0.00004 | -0.00003
5, 20.00049 | 0.000059 | <0.0001 | -0.00060 | -0.00037
B 20.00230 | 0.000402 | <0.0001 | -0.00309 | -0.00151
A, 20.00002 | 3.923E-6 | <0.0001 | -0.00003 | -9.99E-6
3, 20.00001 | 4.827E-6 | 0.0022 | -0.00002 | -5.34E-6
B, 20.00003 | 6.207E-6 | <0.0001 | -0.00004 | -0.00001
A, 20.00044 | 0.000107 | <0.0001 | -0.00065 | -0.00023
B, 20.2002 | 0.0442 [ <0.0001 | -0.2960 | -0.1225
B 70871 0.7165 | <0.0001 | -8.5927 | -5.7815
A, 20.2359 | 02170]02773 | -0.6617| 0.1899
5 20.00088 | 0.000026 | <0.0001 | -0.00093 | -0.00083
5 13862 1249202674 | -1.0646| 3.8369
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Parameter Estimates Resulting from the full FSCR model with combined minimum



Parameter Estimate StdErr | pvalue | LowerCL | UpperCL
S, 2.1342 3.3684 | 0.5265 -4.4741 8.7424
é, 110.3 137.4 | 0.4224 -159.3 379.8
S, 286.9 | 84.1765 | 0.0007 121.7 452.0
S 641.1 | 58.8314 | <0.0001 525.7 756.5
S, -0.0220 1.0843 | 0.9838 -2.1493 2.1053
S, -1858.9 848.4 | 0.0286 -3523.4 -194.5
S, -549.4 1106.2 | 0.6195 -2719.6 1620.8
S, -232.3 | 94.0804 | 0.0137 -416.9 | -47.7519
Sy 7.5555 | 22.7472 | 0.7398 | -37.0706 | 52.1815
o, 3597.7 5086.4 | 0.4795 -6380.8 | 13576.2
0y, 1952.2 5714.8 | 0.7327 -9259.1 | 13163.5
S5 412.1 2812.8 | 0.8835 -5106.2 5930.4
S, -101.1 767.5 | 0.8952 -1606.8 1404.6
Oys -0.8081 0.3200 | 0.0117 -1.4358 | -0.1804
Sy 0.0146 | 0.0160 | 0.3604 -0.0167 0.0460
é,, -0.1080 1.0836 | 0.9206 -2.2338 2.0178
S, 49.4944 3.0264 | <0.0001 | 43.5571 | 55.4317

=
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Observed versus Predicted Plots Associated with the FSCR Full Model
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Observed versus Predicted Plots Associated with the FSCR Additivity Model
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Appendix B6
Observed versus Predicted Plots Associated with the FSCR Interaction Threshold
Model
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Appendix C1

Derivatives of the FSCR Scaled Interaction Threshold Model with Respect to the
Model Parameters

o = [1 —exp{;%(x —5,.)H(x >=6,)(i=1,2,6,12,13,16,17)

é‘6"1_2_6_12_13,16_17 i

(4= 26 ni61r) |
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ou B _
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Appendix C2

Parameter Estimates Resulting from the FSCR Scaled Full Model with Combined
Minimum Response Parameters

Parameter Estimate | Standard | p-value | Approximate 95%
Error Confidence Limits

@ 5 612130617 | 00-2556 1.4495 | <0.0001 | 47.4120 | 53.0992
% o1 e1s | 307384 1.9501 [ <0.0001 | 26.9126 | 34.5642
@ ... | 143276| 1.0261 | <0.0001 | 12.3146| 163406
B, -0.0608 0.0164 | 0.0002 -0.0929 | -0.0286

B, -0.0378-| 0.0142 | 0.008 -0.0657 | -0.00989

il -11.9346 2.0221 | <0.0001 | -15.9015 | -7.9677

B, -8.3300 1.7098 | <0.0001 | -11.6843 | -4.9757

B -6.9610 1.0886 | <0.0001 | -9.0966 | -4.8253

B -0.7186 0.2249 | 0.0014 -1.1598 | -0.2774

5, -53.8744 5.5415 | <0.0001 | -64.7458 | -43.0031

B -33.9523 3.4438 | <0.0001 | -40.7084 | -27.1962

JiX -56.7315 6.0522 | <0.0001 | -68.6048 | -44.8583
Bio -0.00262 | 0.000549 | <0.0001 | -0.00369 | -0.00154
B -20.7825 4.8148 | <0.0001 | -30.2283 | -11.3368
B, -12.1418 2.5247 | <0.0001 | -17.0948 | -7.1889
B, -27.9797 6.3307 | <0.0001 | -40.3993 | -15.5601
B -6.6610 1.0155 | <0.0001 | -8.6533 | -4.6687

B -0.3749 0.0639 | <0.0001 | -0.5003 | -0.2494
Bie -6.5054 2.4139 | 0.0071 | -11.2411 | -1.7697
B, -0.3312 0.2744 | 0.2277 -0.8695 0.2072

J, 0.3891 1.4995 | 0.7953 -2.5527 3.3309

3, 3.0937 3.9265 | 0.4309 -4.6094 | 10.7969




Parameter Estimate | Standard | p-value | Approximate 95%
Error Confidence Limits

S, 76.4097 398.4 | 0.848 -705.3 858.1
o, 513.1 147.9 | 0.0005 223.0 803.3
Oy 669.5 147.5 | <0.0001 380.2 958.8
O 0.0427 0.1295 | 0.7417 -0.2114 0.2968
Sy 9.8125 | 25.1041 | 0.696 -39.4372 | 59.0621
S, 32273 5581.7 | 0.5632 -7723.0 | 141775
Oy 0.00361 0.0197 | 0.8546 -0.0350 0.0423
S, 1.8587 0.9770 | 0.0573 -0.0580 3.7755
& 42.2947 | 14.7759 | 0.0043 13.3070 | 71.2823
B -0.00087 | 0.000467 | 0.0622 | -0.00179 | 0.000044
S, 49.4723 | 74.3290 | 0.5058 | -96.3473 195.3

&
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Parameter Estimates Resulting from the Fit of the FSCR Scaled Additivity Model

Parameter Estimate
% 3 6 12_13_16_17 50.83547
3 10 11_14_15 30.93872
& 5 780 14.29674
B, -0.06027

B, -0.04032

5 -12.0046

B, -8.2648

B -6.93473

B -1.51304

B -54.1238

By -34.5465

5 -56.2282
Pro -0.00257
P -20.8711
B -13.0153
B -28.5603
B4 -6.75876
Bis -0.37213
Bis -7.41317
B -0.4366

g 0.218393

S, 2.999922

S, 40.43141
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Parameter Estimate
S, 498.8989
S 622.8992
O 0.019764
Sy 3.250986
oy, 3099.349
Oy 0.002821
o, 2.046182
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Appendix C4
Parameter Estimates Resulting from the Fit of the FSCR Scaled Interaction
Threshold Model

Parameter Estimate

& 5 6 12 13 1617 50.43233
| Q3 19 11 14 15 30.90785
Q4 5 7389 14.23039
B, -0.05927

B, -0.04015
B -11.9207
B, -8.13799

Bs -6.9295

Bs -0.70073

B -53.433

By -34.5557

Bs -55.9946

Bio -0.00254
B -20.5839
B -12.6627
B -28.4047
B4 -6.80725
Bis -0.37296
B -6.39152
Bis -0.49315

) 0.201199

S, 2.998452

S, 41.69784




Parameter Estimate
S, 495.3648
J; 665.1093
O 0.020615
S 3.443008
o, 3014.988
06 0.004053
S, 2.174192

a,, 44.86722
B, -0.00099
A 105.298
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SAS Penalized Optimal Second Stage Design Code for the FSCR Interaction Threshold Model and the Fixed-Ratio

Mixture of 18 Polyhalogenated Aromatic Hydrocarbons

*Create design columns;
$macro vartemp;
$do i=1 %to &ncol;

bestdesign&i=bestdesign(l, &i];

¢end;
$mend;

*String together design columns;
$macro varlabel;
$do i=1 %to &ncol;
bestdesigné&i
%end;
$mend;

*Create list of design parameters;
$macro varlist;
tl || gl || nl ||
$do i=2 %to &m;
t&i || qg&i || n&i ||
%end;
$mend varlist;



*Create loop to allow lambda to iterate;

$macro lambdaloop(m— lambda _low=,lambda high=, lambda by=, integer=1,divisor=1, sortcel=,ncol=

odo lambdatemp &lambda low %to &lambda hlgh

$1if &integer=0

%end;
%else

%end;

*&lambdaval 1s the

print

$then %do;

C

get nonin
$by &lambda by;

eger vaiues;

%let lambdaval=%sysevalf (&lambdatemp/&divisor);

$let lambdaindex=fraction&lambdatemp;

%do;
$let lambdaval=&lambdatemp;
2let lambdaindex=&lambdaval;

use dosesé&m;
read all into start doses;

resultsé&m.

*Loop

$do index=1

%end;

&lambdaindex=j (1, &ncol, 0);

through starting designs;
$to 8;
tempd=start doses[&index,];

bdaindex is the identifier used
different only when §lambdaval is
'lambda value

lambda used in the penalization process;
to keep track of &1

ampdaval;

a noninteger value;

spenalized design(m=é&m,start vals=tempd, lambda=&lambdaval) ;

results&m. &lambdaindex=resultsé&m.

&lambdaindex //

(count || &lambdaval || &index || $varlist
det || actual_var || practical_var || actual_d ||
fn value || practical fn value || flagl || flag2 ||

$put 'Design for lambda ' &lambdaval

completed.';

and starting value set

practical d ||
flag3);

&index

)i

' &lambdaval '-- - e
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%end;
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resultssam. &lambdaindex=results&m. &lambdaindex([2:nrow(resultsé&m. &lambdaindex),];
print results&m. &lambdaindex;

*Sort candidate designs;
do index1=0 to (nrow(resultsé&m. &lambdaindex)-1);
do index2=1 to (nrow(resultsé&m. &lambdaindex)-l-indexl);
if
(resultsé&m. &lambdaindex[index2+1, &sortcol]<results&m. &lambdaindex[index2, &sortcol])
then do;
temp=results&m. &lambdaindex[index2,];
resultsé&m. &lambdaindex[index2, ]=resultsé&m. &lambdaindex[index2+1,];
results&m. &lambdaindex[index2+1, ]=temp;
end;
end;
end;

bestdesign=results&m. &lambdaindex([1,];
%vartemp;

*Insert optimal design for a given lambda into design data set;
edit penalized ds&m var {%varlabel};

append var {%$varlabel};

¢put 'Design for lambda ' &lambdaval ' appended to data set.';

$mend lambdaloop;

*title

run,

'Assumed Parameter Values';
data assumptions;
set scaled.Dertart_intest;

data for anal;
set fscr.complete;

run;

where pert4 ne .;
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proc sort data=for anal;
by t ind;
run;

proc freq data=for anal;
tables t / out=obst;
run;

/*Run macro a grid of starting values {8 dose points) */

/¥

/
y
data

e

end;

end;

end;
end;
end;
end;
end;

ran;
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input “a&‘ia<‘0ﬁ*
“GdePS‘uﬁQ.

gn2l besfaeslqr?/ be
n27 bestdesignl§ i
';133 bestdesign34 b

proc iml;
*Define the dose-response relatioconship using parameter values;

start model definition;

use assumptions;

read all var {intest} into parm assumptions;

p=nrow (parm_assumptions);

alphas=parm assumptions[1:3];

alphal 2 6 12 13 16 l7=alphas(1];
alphal alphal 2 6 12 13 16 17; alpha2=alphal 2 6 12 13 16 17;

alpha6= alphal_2_6_12 13 16 17; alphal2=alphal 2_6_12 13 16 17;
alphal3=alphal 2 6 12 13 16 17; alphal6=alphal 2 6 12_13_16_17
alphal7=alphal 2 6 12 13 16 17;

alpha3 10 11 14 15= alphas[2]
alpha3=alpha3 10 11 14 15; alphalO=alpha3 10 11 14 15;
alphall=alpha3 10 11 14 _15; alphalé4=alpha3 10 11 14 15;
alphal5=alpha3 10 11 14 15
alpha4 5 7 8 9= alphas[B],
alpha4= alpha4 5 7 8 9; alphab5=alpha4 5 7 8 9; alpha7=alpha4 5 7 8 9;
alpha8=alpha4 5 7 8 ~9; alpha9=alpha4 5 7 8 9
betas=parm assumptions([4:20];
$separate betas;
deltas=parm assumptions[21:30];
deltal=deltas[1l]; delta2=deltas[2]; delta3=deltas[3]; deltad=deltas[4]; delta5=deltas[5];
deltab=deltas[6]; deltalO=deltas[7]; deltall=deltas[8]; deltal6=deltas|[9];
deltal7=deltas[10];

’



delta7=0; delta8=90;

delta9=0; deltal2=0; deltal3=0; deltald=0; deltal5=0;

alpha mix=parm assumptions[31];
beta mix=parm assumptions[32];

cptl delta=parm assumptions[33];
tauhat=3.33;

print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print

a8=0.190861;
al4=0.000988;

'Assumed Form cf the Dose-Response Relationship---—-------v——-----onooonm ;

'alphal 2 6 12 13 16 _17' alphal 2 6 12 13 16 17;

'alpha3 10 11 14 15' alpha3 10 11 14 15;
'alpha4 5 7 8 9!

'Single Chemical Slopes'

'Threshold,
'Threshold,
'Threshold,
'Threshold,
'Threshold,
'Threshold,
'Threshold,
'Threshold,
'Threshold,
'Threshold,
'‘Agents 7,

Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent

8, 9,

alpha4 5 7 8 9;

betas;

1' deltal;

2' delta2;

3' delta3;

4' delta4;

5' deltas;

6' deltaé6;
10' deltalO;
11' deltall;
16' deltalo;
17" deltal7;
12, 13, 14, 15 do not have threshcids.';

'alpha mix' alpha mix;
'Mixture Slope' beta mix;

'Interaction _
al=0.000003; a2=0.000013; a3=0.076814; a4=0.038282; a5=0.190302; a6=0.000302; a7=0.190181;
a9=0.006541;
al5=0.000007;

Thre

shold' cptl delta;

al0=0.000197;
al6=0.000007;

all=0.188700; al2=0.039237; al3=0.077523;
al7=0.000010; al8=0.000032;

sfl=1; sf2=1; sf3=100000; sf4=10000; sf5=10000; sf6=1; sf7=1000000; sf8=1000000;
sf9=100000; sfl10=1; sf11=1000000; sf12=1000000; sf13=1000000; sf14=10000; sfl15=1;
sfle=1; sfl7=1; sft=1;

finish;

*Read in data;
start read data;
use for anal;

read all var {xl1l} into x1;
read all var {x3} into x3;
read all var {x5} into x5;

read all var {x2} into x2;
read all var {x4} into x4;
read all var {x6} into x6;
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read all var {x7} into x7; read all var {x8} into x8;

read all var {x9} into x9; read all var {x10} into x10;

read all var {x1ll} into x11l; read all var {x12} into x12;

read all var {x13} into x13; read all var {x14} into x14;

read all var {x15} into x15; read all var {x16} into x16;

read all var {x17} into x17; read all var {x18} into x18;

read all var {t} into t;

read all var {xl ind} into x1 ind; read all var {x2 ind} into x2 ind;

read all var {x3_ind} into x3 ind; read all var {x4 ind} into x4 ind;

read all var {x5 ind} into x5 ind; read all var {x6 ind} into x6_ind;

read all var {x7 _ind} into x7 ind; read all var {x8_ ind} into x8 ind;

read all var {x9 ind} into x9 ind; read all var {x10_ind} into x10 ind;

read all var {x1ll ind} into x11 ind; read all var {x12 ind} into x12 ind;

read all var {x13 ind} into x13 ind; read all var {x1l4 ind} into x14 ind;

read all var {x15 ind} into x15 ind; read all var {x16 ind} into x16 ind;

read all var {x17 ind} into x17 ind; read all var:.{x18 ind} into x18 ind;

read all var {t_ind} into t ind;

read all var {pertd4} into y;

n=nrow(t); nmix=t ind([+]; nsingle=n-nmix;

print 'Of the ' n ' observations contained in the coriginal experiment, ';

print ' ' nsingle ' observations were associated with single chemical data, and';

print ' ' nmix ' observations were associated with the mixture.';
finish;

*Define bisection algorithm;
start bisection;
epsilon=0.0001;
criterion=1;
mu_high=100; tmu high=0;
mu_low=max(alphal 2 6 12 13 16 17,alpha3 10 11 14 15,alpha4 5 7 8 9,alpha mix)+epsilon;
$findt (mu=mu_ low); tmu low=t est;
do until (criterion<epsilon);
mu_new=(mu_high+mu_low)/2;
$findt (mu=mu_new) ;
tmu new=t est;
criterion=abs (t_obs-tmu new);
if tmu new>t obs then mu_low=mu new;
else if tmu new<t obs then mu_high=mu_new;
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end;
*print criterion t obs itmu new mu new;

finish;

*Find additivity predictions;

start additivity;
*print obst;
alphal=alphal 2 6 12 13 16 17; alphaZ2=alphal 2 6 12 13 16 17;
alpha6=alphal 2 6 12 13 16 17; alphal2=alphal 2 6 12 13 16 17;

alphal3=alphal 2 6 12 13 16 17; alphal6=alphal 2 6 12 13 16 17;
alphal7=alphal 2 6 12 13 16 17;

alpha3=alpha3 10 11 14 15; alphalO=alpha3 10 11 14 15; alphall=alpha3 10 11 14 15;
alphalé4=alpha3 10 11 14 15; alphal5=alpha3 10 11 14 15;

alphad=alphad4 5 7 8 9; alphab=alphad 5 7 8 9; alpha7=alpha4 5 7 8 9;

alpha8=alpha4 5 7 8 9; alphaS=alpha4 5 7 8 9;
addt=j (nrow(obst),1,0);
mixadd=j (nrow(obst),1,0);
mixadd[1]=100;
do i=2 to nrow{({obst);
t obs=obst[i];
run bisection;
addt [i]=tmu new; mixadd[i]=mu_ new;
end;
*print mixadd;
finish;

start addmix;
mix add=j(n,1,0);
do i=1 to n;
sum=0;
do j=1 to nrow(obst);
if t ind[i]=0 then sum=0;
else do;
if t [i]=obst[j] then temp=mixadd[]j];
else temp=0;
sum=sum+temp;
end;
end;



mix add[i]=sum;
end;
finish;

start interaction;

t obs=cptl delta;

run bisection;

mu cptl delta=mu new;
finish;

*Compute parameter covariance matrix assoclated with the original experiment;
start original covmat;
*%createplot;
use obst; read all var {t} into obst;
%calculatemu(original=1l, t =t);
single=t[l:nsingle];
$singleagent derivatives;
mixture=t[nsingle+l:n]j;
tmixture derivatives( t =mixture);
mixture fixedf=alpha derivs || beta derivs || delta derivs || alpha mix deriv ||
beta mix deriv || cptl_delta deriv;
fixed f=singleagent fixedf // mixture fixedf;
fixed vmat=diag(mu original):;
original varmat=tauhat*inv((fixed f *inv(fixed vmat)*fixed f));
det original=det (original varmat); *print det original;
detll=det (original varmat[1:30,1:30]); det22=det(original varmat[31:33,31:33]);
stderr=j (p,1,0);
do i=1 to p;
stderr[i]=sqrt(original varmat[i,i]):
end;
var cptldelta=original varmat[p,p];
print 'The initial experiment resulted in variance of the interaction thresheld
var cptldelta;
finish;

Al
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star

fini

run
run
ruan
run

*$la

=8, _ _
*Iampdaloop (=8, lambda low=1, lambda high=3,lam

quit

t minimumvariances;
minh xqg8=3413.8;
minh xg6=3228.7;
minh xg4=3195.6;

sh minimumvariances;

model definition;
read data;

original covmat;
minimumvariances;

mbdaloop {
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data temp2;

penalized dsd;
empZ; run;




Appendix D
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Appendix D

SAS Optimal Design Code

*Create data set of starting values for design search;
data doses4;
do x1=0;
do x2=0.9, 1.1, 2 ;
do x3=4, 6, 8 ;
do x4=12, 16, 20;
output;
end;
end;
end;
end;
run; *27 sets of starting values;
*Create data set to contain results of design search;
data lrcidpt;
input index count2 dchk 2 dchk 22 x1 gl nl x2 g2 n2 x3 g3 n3 x4 g4 n4 initial final lbest
xflag gflag ;
datalines;

run;



*Macro to f£it nonline exponential model using

$macro parameter estimates(fixdelta=,delta=);

run initial;
delta=&delta;
fixdelta=&fixdelta;
run optima;

$mend parameter estimates;

*Macro to find confidence interval;
$macro findci;

run target;
run find 1b;
run find ub;

$mend findci;

*Macro te find lower confidence bound;
$macro findlb;

run target;
run find lb;

$mend findlb;

*Macro to create candidate design vector;
$macro create designx;

*Create x vector associated with candidate design;

designx=.;
%do i=1 %to &m;

if n&i>0 then designx=designx // j(n&i,1,xé&i);

%end;
designx=designx[2:nrow(designx)];

$mend create designx;
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*Macro to predict responses for a candidate design;

%macro create designdata;

*Randomly select residuals from the original experiment;
residualnumber=54#ranuni (j (nrow(designx),1,70100))+1;
designres=stdres sorted[residualnumber];

*Predict responses fcr the candidate design based only randomly selected residuals;
muhat=alphafixed+gammafixed#exp (betafixed# (designx-deltafixed) # (designx>=deltafixed));
predy=muhat+designres# (sqrt (taufixed#muhat)) ;

*Combine data from the original experiment with design data;
x=orig x // designx;
y=orig y // predy;

$mend create designdata;

*Macro fo find the bootstrap estimate of the median lower bound;
$macro bootstraplb;

$create designx;

*Estimate lower confidence bound on the threshold using a boctstrap-type procedure;
1lbs=3j(100,1,0);
do i=1 to 100;
%create designdata;
$findlb;
lbs[i]=1b;
end;

*Scort lower bounds;

temp=1bs;

lbs[rank(lbs), ]=temp;
unsortedlbs=temp; sortedlbs=lbs;
lbest=sortedlbs[51];

$mend bootstraplb;
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*Macro to list the design parameters;
$macro listdesignparms;

¢do i=2 %to é&m;
x&i //

%end;

q2

%do i=3 %to &m;
// q&i

$end;

$mend listdesignparms;

C nmal design macro;
%macro design(m=,startvals=,design n=);

*Break up vector of starting values;
m=&m; design n=&design n;
¢do i=1 %to &m;
x&i=&startvals[&i];
gq&i=1/m;
n&i=design n*qg&i;
%end;

*Define objective function for use within simplex2;
start function2;
sumg=0; sumn=0; xcheck=0; gcheck=0;
$do i=2 %to &m;
x&i=parms2[&i-1];
g&i=parms2[&m + (&i-2)];
n&i=round(design n#q&i);
sumg=sumg+qgé&i; sumn=sumn+né&i;
xcheck=xcheck + (x&i<0); qgcheck=qcheck + (g&i<0) + (q&i>1);
$end;
gl=l-sumg; nl=design n-sumn;
gcheck=gcheck + (gl<0) + (gl>1);
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if ((xcheck+gcheck)>0)then do;
fn value2=10**30;
if xcheck>0 then xflag=1;
if gcheck>0 then gflag=1;

end;
else do;

sbootstraplb;

fn value2=-lbest;
end;

finish function2;

4+

*Define procedure for finding the lower bound associated with a candidate design;
%include simplex2;
start optima2;

xflag=0; gflag=0;

in parms2=%listdesignparms;

in steps2=in parms2#0.5;

$bootstraplb; initial=lbest;

print 'The initial design is given by ';

print 'doses ' %do i=1 %to &m;
x&1
%end; ;
print 'proportions ' %$do i=1 %to &m;
g&i
%end; ;
print 'The expected lower bound on the threshold associated with the initial design is '
lbest;

run simplex2; final=-fn value2;

run function2;

print 'After ' count2 ' iterations,';
print 'the resulting design is given by ';

print 'doses ' %do i=1 %to &m;
x&1
$end; ;

print 'proportions ' %do i=1 %to &m;
g&i

%end; ;
print 'The associated lower bound on the threshold is ' final lbest;



finish optima2;
run optima?2;
$mend design;

*Grid search;
$macro designloop;
$do index=1 %$to 27 ;*nrow(start doses}:
proc iml;

*Read in deltamethrin data:

use deltamethrin;

read all var {dose} into orig x;
read all var {percont} into orig y:;

*Assign starting value for alpha,beta;
start initial;
alpha=25; gamma=100-alpha;
beta=-0.2;
p=3;
n=nrow(y);
finish initial;
*Define gl according to v{mu)=t*mu;
start ql;
gamma=100-alpha;
mu=alphatgamma#exp (beta# (x-delta) # (x>
gl=sum(y#log (mu)-mu) ;
tau=sum ( ( (y—-mu) ##2) /mu) / (n-p) ;
finish qgl;

*Define objective function for use within s
$include simplex;
start function;
if fixdelta=0 then do;
alpha=parms{1]; beta=parms{2];
end;

=delta));

implex;

delta=parms[3];
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else do;

alpha=parms[1]; beta=parms[2];
end;
if alpha<0O then fn value=10**30;
else do;

run gl;

fn value=-qgl;
end;

finish function;

*Define procedure for finding mgle;
start optima;
if fixdelta=0 then do;
in parms=alpha // beta // delta;

end;
else do;
in parms=alpha // beta;
end;
in steps=in parms#0.01;
run gl;
run simplex; run function;
/ *

print 'After

print et .

if fixdelta=0 then do;
¥

¥

print ‘'alpha alpha beta beta ' delta

end;
else do;
print 'alpha ' alpha 'beta ' beta ' fixed delta ' delta;
end;
* //

finish optima;



*Define procedure for calculating target gl {for constructing confi
start target;
$parameter estimates(fixdelta=0,delta=1);
gfull=qgl;deltahat=delta; taufull=tau;
f=finv(0.95,1,n-p);
compare=qfull-0.5*taufull*f;
*print 'Compare restricted gls to ' compare;
finish target;

Sarce

cence

*Define procedure for finding the lower bound on the dose threshold;

start find 1lb;
delta low=0; delta high=deltahat;
$parameter estimates(fixdelta=1l,delta=delta low);
gred=qgql;
criterion=abs (gqred-compare) ;
if criterion<0.5 then lb=delta low;

else do;
if gred>compare then do until (gred<compare | criterion<0.5);
temp low=delta low-1;
%parameteq_estimates(fixdelta=1,delta=temp_low);
gred=ql; criterion=abs(gqred-compare);
delta low=temp_ low;
end;

if gred<compare then do until (criterion<0.5);
delta mid=(delta lowt+delta high)/2;
tparameter estimates(fixdelta=1l,delta=delta mid);
gred=ql; criterion=abs (gqred-compare);
if gred>compare then delta high=delta mid;
else delta low=delta mid;
end;
if criterion<0.5 then lb=delta mid;
end;
*print 'The lower confidence bound on the threshoid is ' ib °
finish find lb;

247
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*Define procedure for finding the upper bound on the dose
start find ub;
delta low=deltahat; delta_high=3;
tparameter estimates(fixdelta=1,delta=delta_high);
qgred=ql;
criterion=abs (qred-compare) ;
if criterion<0.5 then ub=delta high;
else do;
if gred>compare then do until (gred<compare | criterion<0.5);
temp high=delta high+1;
tparameter estimates(fixdelta=1,delta=temp high);
gred=ql; criterion=abs (gred-compare) ;
delta high=temp high;
end;
if gred<compare then do until (criterion<0.5);
delta mid=(delta low+delta high)/2;
tparameter estimates(fixdelta=1,delta=delta mid);
gred=gl; criterion=abs(gqred-compare);
if gred>compare then delta low=delta mid;
else delta high=delta mid;

end;
if criterion<0.5 then ub=delta mid;
end;
*print 'The upper confidence bound on the threshold is ' ub '.';

finish find ub;

*Find mgle for original experiment;

Xx=orig x; y=orig y;

tparameter estimates(fixdelta=0,delta=1);

taufixed=round(tau,0.01); alphafixed=round(alpha,1l); gammafixed=100-alphafixed;
betafixed=round(beta,0.01); deltafixed=round(delta,0.01);

print 'The Original Experiment —-—-—-——--—=-——--——————— ;

print 'There were ' n ' observations contained in the original experiment.';

print 'After ' count ' iterations, the achieved quasi-likelihocd is ' gl '.';

print 'The resulting parameter estimates are alpha ' alphafixed ', beta '
betafixed;

print 'and delta ' deltafixed '.';



$end;

quit;

print 'The asscociated estimate of tau is ' taufixed '.

*Calculate and sort residuals from oric
stdres=(y-mu) # (1/ (sqrt (tau#mu)) ) ;
temp=stdres;
stdres[rank(stdres), ]=temp;

stdres unsorted=temp; stdres sorted=stdres;

exNpe

t stdres unsorited stdres sorted;
*Find glr-ci for iment;
run target;

% £findlb;

print 'The lower confidence bound on the dose threshcld is

use dosesi4;
read all var {xl1 x2 x3 x4} into start doses;

*tempd={0 0.7 7.35 14};
index=&index;
tempd=start doses[index,];
%design(m=4, startvals=tempd,design n=100);
edit lrcidpt var {index count2 dchk 2 dchk 22
x1 gl nl
X2 g2 n2
x3 g3 n3
x4 g4 n4
initial final lbest
xflag gflag};
append var {index count2 _dchk 2 dchk_ 22
x1l gl nl
X2 g2 n2
x3 g3 n3
x4 g4 n4
initial final lbest
xflag gflag};

gput 'Design for starting value set ' &index ' completed.';

imernt

.

-

’
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$mend designloop;

%designloop;
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